关于泰勒级数的一些理解
对于泰勒级数,其实大部分时候都不是很了解它其中的含义,怎么来的,其实大部分人都不是很清楚。(包括作者 )
泰勒级数最多应用其实在计算机科学上,因为对于很多函数,我们不可能直接带值求解,比如 f ( x ) = e x f(x)=e^x f(x)=ex,比如我带个2进去,你最多只能求得它的近似值,而且计算量还很大,而且还不是很精确,那么有人就想了,能不能用一个近似的函数,或者换句话说尽可能的去逼近这个函数的一个带有x的多项式呢,因为这样的话,比如说一个多项式 f ( x ) = x + x 2 + x 3 f(x)=x+x^2+x^3 f(x)=x+x2+x3你带一个2进去就可以算得一个比较精确的值14对吧。怎么去逼近呢。
先把公式摆出来再解释。
f ( x ) = ∑ i = 0 ∞ f ′ ( i ) ( x 0 ) ( x − x 0 ) i i ! f(x)=\sum_{i=0}^{\infty }\frac{ {f'^{(i)}(x_0)(x-x_0)^i}}{i!} f(x)=i=0∑∞i!f′(i)(x0)(x−x0)i
我们先对分子着部分进行解释,可以看到这里是关于高阶求导的一个式子,其实我们可以看到,当i等于0的时候,式子就变成了 f ( x 0 ) f(x_0) f(x