泰勒级数理解

泰勒级数通常用于计算机科学中,作为复杂函数的近似方法。通过将函数表示为无限项多项式,可以简化计算,尤其是在处理如e^x这样的函数时。文章介绍了泰勒级数的概念,解释了如何从原函数利用导数逼近多项式,并通过求导和莱布尼茨法则展示如何应用泰勒公式。最后,展示了泰勒级数展开式在逼近函数时的结构。
摘要由CSDN通过智能技术生成

关于泰勒级数的一些理解

对于泰勒级数,其实大部分时候都不是很了解它其中的含义,怎么来的,其实大部分人都不是很清楚。(包括作者

泰勒级数最多应用其实在计算机科学上,因为对于很多函数,我们不可能直接带值求解,比如 f ( x ) = e x f(x)=e^x f(x)=ex,比如我带个2进去,你最多只能求得它的近似值,而且计算量还很大,而且还不是很精确,那么有人就想了,能不能用一个近似的函数,或者换句话说尽可能的去逼近这个函数的一个带有x的多项式呢,因为这样的话,比如说一个多项式 f ( x ) = x + x 2 + x 3 f(x)=x+x^2+x^3 f(x)=x+x2+x3你带一个2进去就可以算得一个比较精确的值14对吧。怎么去逼近呢。
先把公式摆出来再解释。

f ( x ) = ∑ i = 0 ∞ f ′ ( i ) ( x 0 ) ( x − x 0 ) i i ! f(x)=\sum_{i=0}^{\infty }\frac{ {f'^{(i)}(x_0)(x-x_0)^i}}{i!} f(x)=i=0i!f(i)(x0)(xx0)i

我们先对分子着部分进行解释,可以看到这里是关于高阶求导的一个式子,其实我们可以看到,当i等于0的时候,式子就变成了 f ( x 0 ) f(x_0) f(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值