线段树

线段树(Segment Tree)是一种可以对区间进行快速查询与快速更新的数据结构。

线段树有两个操作:

1  void update(int i, int delta):更新数组中下标为i的元素的值,将其值加delta

2  int get(int min, int max):得到区间[min, max]和

时间复杂度:更新和求区间和操作都是O(\log n)

空间复杂度O(n)

线段树与树状数组非常相似,都是在长度为n的数组中,以O(log n)的时间复杂度更新数组元素,以O(log n)的时间复杂度得到区间和/前缀和。

java代码实现

/**
 *              0
 *          /       \
 *       1             2
 *    /    \        /    \
 *   3      4      5      6
 *  / \    / \    / \    / \
 * 7  8   9  10  11 12  13 14
 */
public class SegmentTree {

    private int[] nodes;
    private int size;

    public SegmentTree(int size) {
        this.size = size;
        nodes = new int[size * 4];
    }

    public void update(int i, int delta) {
        update(i, delta, 0, 0, size - 1);
    }

    private void update(int i, int delta, int ni, int left, int right) {
        if (left > i || right < i) return;
        nodes[ni] += delta;
        if (left < right) {
            int middle = (left + right) / 2;
            update(i, delta, ni * 2 + 1, left, middle);
            update(i, delta, ni * 2 + 2, middle + 1, right);
        }
    }

    public int get(int i) {
        return get(i, i);
    }

    public int get(int min, int max) {
        return get(min, max, 0, 0, size - 1);
    }

    private int get(int min, int max, int ni, int left, int right) {
        if (left >= min && right <= max) {
            return nodes[ni];
        } else if (right < min || left > max) {
            return 0;
        } else { // left < right
            int middle = (left + right) / 2;
            return get(min, max, ni * 2 + 1, left, middle) +
                    get(min, max, ni * 2 + 2, middle + 1, right);
        }
    }
}

源代码地址https://github.com/SSSxCCC/Algorithm

接下来推荐看线段树的升级版:zkw线段树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SSSxCCC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值