AlphaZero算法实现游戏AI

通过Python实现AlphaZero框架,涵盖抽象游戏规则、模型类、蒙特卡洛树等关键组件,成功应用于五子棋、四子棋及翻转棋AI,并在Unity中实现人机对战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

著名的围棋人工智能AlphaGo有多个版本。其中AlphaGo Zero纯靠增强学习算法击败了AlphaGo所有其它版本,其由论文Mastering the game of Go without human knowledge介绍。后来将这种纯增强学习算法推广,论文Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm提出的AlphaZero的概念,任何类似的博弈游戏都可以使用AlphaZero算法实现其人工智能。

我使用Python,实现了一个简单的AlphaZero框架,包括如下内容:

1.抽象的游戏规则:定义了一套游戏规则接口。

2.抽象的模型类:定义了模型的接口,包括神经网络的定义,保存读取,训练方法等。

3.蒙特卡洛树:实现了一个蒙特卡洛树及其搜索算法。

4.训练类:对AlphaZero增强学习算法过程的实现,其程序流程如图所示。

1.png

5.工具类:模型的打包,训练过程作图等方法。

我使用这个AlphaZero框架实现了五子棋AI,四子棋AI,翻转棋AI。并使用Unity实现了人和这些AI对战的小游戏,效果如下:

1.jpg    2.jpg

3.jpg    4.jpg

源代码及相应的介绍论文在此:https://github.com/SSSxCCC/AlphaZero-In-Unity

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SSSxCCC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值