ACM-动态规划21-三角形最长路径问题这个就是基于 https://mp.csdn.net/postedit/79832350的一个变形,原理类似。
描述
如下所示的由正整数数字构成的三角形:
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,和最大的路径称为最佳路径。你的任务就是求出最佳路径上的数字之和。
注意:路径上的每一步只能从一个数走到下一层上和它最近的下边(正下方)的数或者右边(右下方)的数。
输入 第一行为三角形高度100>=h>=1,同时也是最底层边的数字的数目。
从第二行开始,每行为三角形相应行的数字,中间用空格分隔。 输出 最佳路径的长度数值。
样例输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
1
8
样例输出
30
8
先走一步,找递推公式的方法:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int main()
{
int n;
int maxnum[102][102];
int num[102][102];
cin>>n;
for(int i=0;i<n;i++)
{
for(int j=0;j<=i;j++)
{
cin>>num[i][j];
if(i==n-1)
maxnum[i][j]=num[i][j];
}
}
for(int i=n-2;i>=0;i--)
{
for(int j=0;j<=i;j++)
{
maxnum[i][j]=max(maxnum[i+1][j],maxnum[i+1][j+1])+num[i][j];
}
}
cout<<maxnum[0][0]<<endl;
return 0;
}