ACM-动态规划21-三角形最长路径问题

ACM-动态规划21-三角形最长路径问题这个就是基于 https://mp.csdn.net/postedit/79832350的一个变形,原理类似。

 

描述

如下所示的由正整数数字构成的三角形: 

3 8 
8 1 0 
2 7 4 4 
4 5 2 6 5 

从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,和最大的路径称为最佳路径。你的任务就是求出最佳路径上的数字之和。 
注意:路径上的每一步只能从一个数走到下一层上和它最近的下边(正下方)的数或者右边(右下方)的数。

 

输入 第一行为三角形高度100>=h>=1,同时也是最底层边的数字的数目。

 

从第二行开始,每行为三角形相应行的数字,中间用空格分隔。 输出 最佳路径的长度数值。 

样例输入

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

1
8

样例输出

30

8先走一步,找递推公式的方法:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int main()
{
	int n;
	int maxnum[102][102]; 
	int num[102][102];
	cin>>n;
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<=i;j++)
		{
			cin>>num[i][j];
			if(i==n-1)
			   maxnum[i][j]=num[i][j];
		}
		
	}
	for(int i=n-2;i>=0;i--)
	{
	  for(int j=0;j<=i;j++) 
	  {
	  	 maxnum[i][j]=max(maxnum[i+1][j],maxnum[i+1][j+1])+num[i][j];
	  }
    }
	cout<<maxnum[0][0]<<endl;
	return 0;
 } 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值