数论 扩展欧几里得模板

0人阅读 评论(1) 收藏 举报
分类:

基本算法描述:

  对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)    =ax+by。 

 
证明:设 a>b。 
 
  1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0; 
 
  2,ab!=0 时 
 
  设 ax1+by1=gcd(a,b); 
 
  bx2+(a mod b)y2=gcd(b,a mod b); 
 
  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b); 
 
  则:ax1+by1=bx2+(a mod b)y2; 
 

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2; 

      也就是 ax1+by1=ay2+bx2-(a/b)*by2; (提取公因子b,就可以得到:y1=x2-(a/b)*y2; )

    由a前面的系数相等,b前面的系数相等,就可以求得方程组:

       x1=y2;

       y1=x2-(a/b)*y2; 

 
  (或者根据恒等定理得:x1=y2; y1=x2-(a/b)*y2; )
 
     这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2. 
 
   上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。


#include <iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int gcd(int a,int b,int &x,int &y)
{
    int r,t;
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    else
        r=gcd(b,a%b,x,y);
        t=x;
        x=y;
        y=t-(a/b)*y;
        return r;


}
int main()
{
    int a,b,x,y;
   cin>>a>>b;
   int num=gcd(a,b,x,y);
   cout<<"最大公倍数是 :"<<num<<endl;
   cout<<"方程的两个解是:"<<x<<" "<<y<<endl;
    return 0;
}

查看评论

数论基础(from -- kuangbin)

http://vjudge.net/contest/133425#overview
  • qq_30241305
  • qq_30241305
  • 2016-10-14 11:48:15
  • 750

基本数论入门(快速幂+扩展欧几里得)

数论,快速幂,扩展欧几里得
  • CABI_ZGX
  • CABI_ZGX
  • 2017-10-02 11:35:16
  • 175

刘汝佳训练指南——数论专题知识点总结:

数论是一个神奇的东西,各种结论都很经典,有些懂,有些自己还不是很懂。接下来就一个一个的介绍吧。第一、素数,素数本身就是一个很让人惊奇的数,因为它代表的是唯一,自己就有连个因数,一个是1,一个是自己,因...
  • bobodem
  • bobodem
  • 2015-10-24 16:33:11
  • 578

扩展欧几里得各类问题模板

扩展欧几里得各类问题模板   昨天看了一下扩展欧几里得,今天找了几个模板 1.欧几里得(最大公约数,最小公倍数) int gcd(int a,int b) { if((b==0) re...
  • ky961221
  • ky961221
  • 2016-08-25 09:51:26
  • 547

codevs1213 解的个数-----------数论/扩展欧几里得

原题地址 http://codevs.cn/problem/1213/   题目描述 Description 已知整数x,y满足如下面的条件:   ax+by+c = 0 p r  ...
  • zero_from
  • zero_from
  • 2016-11-16 12:02:28
  • 269

扩展欧几里得 模板

1. 扩展欧几里得模板。 2. 求解两个元是整数的方程可以转换为取余消元枚举其中一个数。 3. 复杂度和gcd一样是lgn。 4. gcd(a,b)//a,b可以是任意整数,但是为了保证结果是正的,所...
  • cFarmerReally
  • cFarmerReally
  • 2016-08-04 22:12:26
  • 588

ACM数论中的常见的模板和结论

1:最大公约数的求法 欧几里得算法实现。递归实现 1 #include 2 #includestring.h> 3 #include 4 #include 5 using n...
  • NaCl__
  • NaCl__
  • 2015-12-31 08:41:13
  • 814

[ACM] POJ 2115 C Looooops (扩展欧几里得求解模线性方程)

解题思路: 参考:
  • sr19930829
  • sr19930829
  • 2014-07-23 09:24:17
  • 1356

【解析】【模板】扩展欧几里得

不要被标题所迷惑了。。。没有吃的 先上一道题吧,noip2012 同余方程 题目描述 求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解。 输入 输入只有一行,...
  • bjmbjmbjmbjm
  • bjmbjmbjmbjm
  • 2016-10-17 15:54:02
  • 215
    个人资料
    持之以恒
    等级:
    访问量: 4000
    积分: 1127
    排名: 4万+
    文章存档
    最新评论