基本算法描述:
对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b) =ax+by。
证明:设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab!=0 时
设 ax1+by1=gcd(a,b);
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
也就是 ax1+by1=ay2+bx2-(a/b)*by2; (提取公因子b,就可以得到:y1=x2-(a/b)*y2; )
由a前面的系数相等,b前面的系数相等,就可以求得方程组:
x1=y2;
y1=x2-(a/b)*y2;
(或者根据恒等定理得:x1=y2; y1=x2-(a/b)*y2; )
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
#include <iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int gcd(int a,int b,int &x,int &y)
{
int r,t;
if(b==0)
{
x=1;
y=0;
return a;
}
else
r=gcd(b,a%b,x,y);
t=x;
x=y;
y=t-(a/b)*y;
return r;
}
int main()
{
int a,b,x,y;
cin>>a>>b;
int num=gcd(a,b,x,y);
cout<<"最大公约数是 :"<<num<<endl;
cout<<"方程的两个解是:"<<x<<" "<<y<<endl;
return 0;
}