数论 扩展欧几里得模板

 

基本算法描述:

  对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)    =ax+by。 

 

 
证明:设 a>b。 
 
  1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0; 
 
  2,ab!=0 时 
 
  设 ax1+by1=gcd(a,b); 
 
  bx2+(a mod b)y2=gcd(b,a mod b); 
 
  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b); 
 
  则:ax1+by1=bx2+(a mod b)y2; 
 

 

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2; 

      也就是 ax1+by1=ay2+bx2-(a/b)*by2; (提取公因子b,就可以得到:y1=x2-(a/b)*y2; )

    由a前面的系数相等,b前面的系数相等,就可以求得方程组:

       x1=y2;

       y1=x2-(a/b)*y2; 


  (或者根据恒等定理得:x1=y2; y1=x2-(a/b)*y2; )
 
     这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2. 
 
   上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

#include <iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int gcd(int a,int b,int &x,int &y)
{
    int r,t;
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    else
        r=gcd(b,a%b,x,y);
        t=x;
        x=y;
        y=t-(a/b)*y;
        return r;
 
 
}
int main()
{
    int a,b,x,y;
   cin>>a>>b;
   int num=gcd(a,b,x,y);
   cout<<"最大公约数是 :"<<num<<endl;
   cout<<"方程的两个解是:"<<x<<" "<<y<<endl;
    return 0;
}

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值