hdu 4549 M斐波那契数列(矩阵乘法+降幂公式)

Problem Description
M斐波那契数列F[n]是一种整数数列,它的定义如下:

F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )

现在给出a, b, n,你能求出F[n]的值吗?
 

Input
输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
 

Output
对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
 

Sample Input
  
  
0 1 0 6 10 2
 

Sample Output
  
  
0 60
 

Source
 

Recommend
liuyiding

让求F[n],公式里面是乘法,不好构造矩阵,但是发现乘法的幂次是相加的:

f0 = a;

f1 = b;

f2 = f0*f1;

f3 = f0 * (f1^2);

f4 = (f0^2) * (f1^3);

f5 = (f0^3) * (f1^5);

可以发现第i项的f0的幂次等于前两项f0幂次的和,f1的幂次同样也是。(其实就是斐波那契数列)

但是还有一个问题,a^(n%mod) != (a^n)%mod,这样我们就得用到降幂公式:

(a^n)%mod = (a^(n%(mod-1)))%mod;   (mod是质数)


#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;

const int mod = 1000000006;

struct Matrix
{
    long long m[2][2];
    int n;
    Matrix(int x)
    {
        n = x;
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                m[i][j] = 0;
    }
    Matrix(int _n,int a[2][2])
    {
        n = _n;
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
            {
                m[i][j] = a[i][j];
            }
    }
};
Matrix operator *(Matrix a,Matrix b)
{
    int n = a.n;
    Matrix ans = Matrix(n);
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            for(int k=0;k<n;k++)
            {
                ans.m[i][j] += (a.m[i][k]%mod)*(b.m[k][j]%mod)%mod;
                ans.m[i][j] %= mod;
            }
    return ans;
}
Matrix operator ^(Matrix a,int k)
{
    int n = a.n;
    Matrix c(n);
    int i,j;
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
            c.m[i][j] = (i==j);
    for(;k;k>>=1)
    {
        if(k&1)
            c=c*a;
        a = a*a;
    }
    return c;
}

LL quickpow(LL x,int k,int m)
{
    LL ans = 1;
    while(k)
    {
        if(k&1)
            ans = ans*x%m;
        x = x*x%m;
        k /= 2;
    }
    return ans;
}
int main(void)
{
    int x,y,n,i,j;
    while(scanf("%d%d%d",&x,&y,&n)==3)
    {
        int a[2][2] = { 0,1,
                        1,1};
        Matrix A(2,a);
        int b[2][2] = { 1,0,
                        0,1};
        Matrix B(2,b);
        A = A^n;
        A = A*B;
        int k1 = A.m[0][0];
        int k2 = A.m[0][1];
        LL ans = (quickpow(x,k1,mod+1)*quickpow(y,k2,mod+1))%(mod+1);
        cout << ans << endl;
    }

    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值