网络流-Dinic算法详解与模板

Dinic算法详解:
我们已经学过了求最大网络流的EK算法,EK算法的思想是每次用bfs找增广路,然后利用记录的路径回退到原点的过程更新网络。
(1)Dinic算法的思路是这样的:每次都不停地用BFS来构造“层次图”,然后用“阻塞流”来增广。这里我特别标出了两个关键词——层次图,阻塞流。


概念:
层次:在残留网络中,把源点到顶点u的最短路径长度(仅仅是路径上边的数目,与容量无关),称为顶点u的层次记为level(u)。源点的层次为0.(所以我们在给顶点分层时只需要一次bfs即可)。
层次网络:对残留网络分层后,删去比汇点层次高的顶点和与与汇点同层的顶点(保留汇点),并删去这些顶点关联的弧,再删去从某层顶点指向同层和低层顶点的弧,所剩下的各弧的容量和残留网络中的容量相同,这样得到的网络是残留网络的之网络,称为层次网络。
允许弧:根据层次网络的定义可知,层次网络中的任意弧< u,v > 都满足level(v)=level(u)+1;这种弧称为允许弧。
所以在实现的时候,我们不需要真正的建立层次网络,只需要对顶点标记层次,增广的时候满足level(v)=level(u)+1这一条件即可
什么是阻塞流呢?其实就是不考虑反向弧时的“极大流”。设容量网络的一个可行流f,当该网络的层次网络中不在存在曾广路时,称该可行流为层次网络的阻塞流。(即当前层次网络所有曾广路总共可增加的流量。)


Dinic算法在进行DFS曾广的时候,会一次性走完当前层次网络的所有的曾广路,有些曾广路有共同的弧,所以在下面代码中有:if(!a) break;//当a!=0,说明当前节点还存在另一个曾广路分支。的判断。

在下面代码中,由于我们是连续存的正向边和反向边,如0和1,2和3,等等。而他们分别与1异或后可以得到对方(二进制最后一位变反,其他位不变),所以我们在更新反向边时用到了这一点。

模板代码:

#include<iostream>
#include<algorithm>
#include<string>
#include<sstream>
#include<set>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<functional>
using namespace std;

#define N 1000
#define INF 100000000

struct Edge
{
    int from,to,cap,flow;
    Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};

struct Dinic
{
    int n,m,s,t;//结点数,边数(包括反向弧),源点编号,汇点编号
    vector<Edge>edges;//边表,dges[e]和dges[e^1]互为反向弧
    vector<int>G[N];//邻接表,G[i][j]表示结点i的第j条边在e数组中的编号
    bool vis[N]; //BFS的使用
    int d[N]; //从起点到i的距离
    int cur[N]; //当前弧下标

    void addedge(int from,int to,int cap)
    {
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        int  m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }

    bool bfs()
    {
        memset(vis,0,sizeof(vis));
        queue<int>Q;
        Q.push(s);
        d[s]=0;
        vis[s]=1;
        while(!Q.empty())
        {
            int x=Q.front();Q.pop();
            for(int i=0;i<G[x].size();i++)
            {
                Edge&e=edges[G[x][i]];
                if(!vis[e.to]&&e.cap>e.flow)//只考虑残量网络中的弧
                {
                    vis[e.to]=1;
                    d[e.to]=d[x]+1;
                    Q.push(e.to);
                }
            }

        }
        return vis[t];
    }

    int dfs(int x,int a)//x表示当前结点,a表示目前为止的最小残量
    {
        if(x==t||a==0)return a;//a等于0时及时退出,此时相当于断路了
        int flow=0,f;
        for(int&i=cur[x];i<G[x].size();i++)//从上次考虑的弧开始,注意要使用引用,同时修改cur[x]
        {
            Edge&e=edges[G[x][i]];//e是一条边
            if(d[x]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
            {
                e.flow+=f;
                edges[G[x][i]^1].flow-=f;
                flow+=f;
                a-=f;
                if(!a)break;//a等于0及时退出,当a!=0,说明当前节点还存在另一个曾广路分支。

            }
        }
        return flow;
    }

    int Maxflow(int s,int t)//主过程
    {
        this->s=s,this->t=t;
        int flow=0;
        while(bfs())//不停地用bfs构造分层网络,然后用dfs沿着阻塞流增广
        {
            memset(cur,0,sizeof(cur));
            flow+=dfs(s,INF);
        }
        return flow;
    }
  };
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值