深度学习
文章平均质量分 82
STILLxjy
不要让任何人打乱你生活的节奏
展开
-
[Object Detection] From YOLO to YOLO3
原创 2020-05-07 15:19:11 · 203 阅读 · 0 评论 -
[Tensorflow 项目] 多类别目标检测( tensorflow-gpu & Windows 10/ ubuntu)
项目原地址本文记录博主在参照上述项目进行实现时的完整流程与详细步骤,记录一些注意点和思考,方便日后复习。项目效果使用Tensorflow Object Detection API 完成对扑克牌的分类与检查。项目流程:安装Anaconda3设置TensorFlow目录和Anaconda虚拟环境收集和标注数据集产生训练数据配置训练文件训练模型提取训练完毕后的模型测试1...原创 2019-08-28 20:45:01 · 1567 阅读 · 0 评论 -
Tensorflow DCGAN网络思路梳理 与 实例代码分析
GAN网络思路梳理:GAN (Generative Adversarial Networks)意为对抗生成网络。它巧妙地利用“对抗”的思想来学习生成式模型,一旦训练完成后可以生成全新的数据样本,可以看成是一种无监督学习方法。GAN的基本原理其实非常简单,可以把GAN看作一个生成数据的工具,GAN可以生成任意类型的数据,我们这里以生成图片为例。假设有两个网络:生成网络G(generator) ...原创 2019-08-22 21:00:52 · 694 阅读 · 0 评论 -
Tensorflow 回调(callbacks)函数的使用方法
在我们训练神经网络时,对于训练数据的迭代次数(epochs)的设置,是一个值得思考的问题。通常,epochs 越大,最后训练的损失值会越小,但是迭代次数过大,会导致过拟合的现象。我们往往希望当loss值,或准确率达到一定值后,就停止训练。但是我们不可能去人为的等待或者控制。tensorfow 中的回调机制,就为我们很好的处理了这个问题。tensorfow 中的回调机制,可以实现在每次迭代一...原创 2019-08-07 16:28:51 · 8671 阅读 · 1 评论 -
Tensorflow实现人马图片的分类器 [使用ImageDataGenerator 无需人为标注数据]
实验环境: goolge colab (改为本地使用也非常的简单,只需将测试部分稍作修改即可)初始环境:tmp文件下为空content文件下只有sample_data文件步骤(1):下载人马数据集的训练集压缩包和验证集压缩包,放在/tmp/horse-or-human.zip/tmp/validation-horse-or-human.zip!wget --no-check-c...原创 2019-08-08 10:49:37 · 1895 阅读 · 0 评论 -
将LabelImg得到的XML文件转为CSV文件
首先,有关LabelImg这个对图像打标的软件的安装和使用方法可以参考:https://github.com/tzutalin/labelImg#labelimghttps://blog.csdn.net/enjoy_endless/article/details/80803149https://cloud.tencent.com/developer/news/325876本文主要讲解,如...原创 2019-07-09 21:28:34 · 2666 阅读 · 7 评论 -
TensorFlow实现线性回归
之前写过TensorFlow建立神经网络的固定步骤: https://blog.csdn.net/STILLxjy/article/details/89366256现在我们严格按照上面的步骤实现线性回归。已知一些点坐标(x,y),通过一条直线去拟合数据点(类似于根据大小估计房屋的价格)(1)通过 y=2x + e 的方式创建实验数据,e为噪音(2)按照步骤建立神经网络:一:定义计算...原创 2019-04-17 22:34:50 · 223 阅读 · 0 评论 -
TensorFlow建立神经网络的固定步骤
TensorFlow 将数值计算表示为计算图。使用TensorFlow建立神经网络的固定步骤: 一:定义计算图结构 二:通过预测值定义损失函数 三:定义优化器 四:创建会话(Session)训练网络我们使用Tensorflow实现网络结构: h = ReLU(W * x + b)计算图如下图所示:在计算图中包含了TensorFlow的3种元素:1:变量(variable)...原创 2019-04-17 22:10:30 · 681 阅读 · 0 评论 -
10所世界顶级名校在线免费机器学习课程
1、DEEPNLP 自然语言处理中的深度学习 牛津大学这是一门侧重于应用的课程,主要讲解了循环神经网络在分析和生成语音及文本方面的最新进展。本课程中引入了机器学习模型的数学定义,并推导出相应的最优化算法。本课程涵盖了神经网络在自然语言处理中的多种应用,如分析文本的潜在维度,将语音转录为文本,两种语言之间的翻译,以及自动回答问题等。本课程由Phil Blunsom主办并与DeepMind自然语言小...原创 2019-02-24 12:48:42 · 996 阅读 · 0 评论 -
机器学习中的特征提取与特征转换 [将线性不可分转换为线性可分]
机器学习中,神经网络是如何将线性不可分的样本,进行很好的分类的?如上图所示,左图中的蓝色的圆圈和红色的叉叉是线性不可分的。如上图中右图所示,我们发现它们是可以被一个圆分开的。假设黑色圆圈的公式为: x1^2 + x2^2 + 0.6 = 0,则可以使用如下公式将蓝色的圆圈和红色的叉叉很好的分开。特征转换 :如上图所示,我们将x-空间的特征,转换为z-空间中的特征。在左图x-空间中,...原创 2018-12-23 13:21:40 · 1971 阅读 · 0 评论 -
基于全卷积神经网络对中文手写体汉字骨架的提取
论文题目:Fully Convolutional Network Based Skeletonizationfor Handwritten Chinese Characters原创 2018-12-16 21:18:57 · 2605 阅读 · 3 评论 -
在神经网络中提取知识 [Distilling the Knowledge in a Neural Network]
论文题目:Distilling the Knowledge in a Neural Network思想总结:深度神经网络对信息的提取有着很强的能力,可以从大量的数据中学习到有用的知识,比如学习如何将手写数字图片进行0~9的分类。层数越多(越深),神经单元个数越多的网络,可以在大量的数据中获取的知识越丰富,能力越强。然而当我们使用一个十分复杂的网络对一个较大的训练集进行训练时,参数众多,网络...原创 2018-12-27 01:10:00 · 955 阅读 · 0 评论 -
理解机器学习和深度学习的核心思想与实现思路 (入门与总结)[图文 + 详细思路]
本文讲解涉及到的核心思想:机器学习与深度学习: 1:线性回归问题。 2:优化搜索时,步长选取的重要性。 3:为什么神经网络可以拟合任意的曲线函数。 4:图像识别网络中,为什么浅层网络只能识别出一些简单的线,面,随着网络的加深可以识别出十分复杂的图案。1:线性回归问题:(1)问题描述如上图所示,小红(左)和小蓝(右)在进行一个水果交换的游戏。目前已经进行了三次交换:第一次:小...原创 2018-12-06 19:57:07 · 1213 阅读 · 0 评论