LC振荡电路 频域计算

基尔霍夫定律

以LC并联电路为例,电容两端的电压VC等于电感两端的电压VL:

流入电容的电流等于流出电感的电流:

从电路元件的本构关系可知

并且

微分方程

调换顺序并进行代换得到二阶微分方程

参数 ω0,谐振角频率定义为:

利用这个可以简化微分方程

相关的多项式是

因此,

或者说

其中j虚数单位。 [3]

 

 

 

 

 

L = 1mH;   C = 1uf

计算得频率约为5032Hz;周期约为198us

### 皮尔斯晶体振荡器仿真电路设计 #### 工作原理概述 皮尔斯振荡器是一种电子振荡电路,适用于配合石英振荡晶体以产生振荡信号[^1]。该电路通过利用晶体的高Q特性来实现稳定的频率输出。具体来说,在皮尔斯振荡器中,晶体被当作一个具有特定谐振特性的元件处理,它能够与外部电容器一起构成并联谐振回路。 #### 仿真电路设计要点 当构建皮尔斯晶体振荡器的仿真模型时,需注意几个关键因素: - **晶体的选择**:选择合适的石英晶体至关重要,因为不同的应用场景可能需要不同规格的产品。 - **偏置条件设置**:确保所选晶体管(如BC547)处于放大区操作范围内,这对于维持足够的增益水平非常重要[^2]。 - **反馈网络配置**:合理设定反馈路径中的组件参数,比如旁路电容(Cb),高频扼流圈(Lc),以及输出耦合电容(Cc)[^3]。 以下是基于上述原则的一个简单Python代码片段用于模拟基本的皮尔斯振荡器行为: ```python import numpy as np from scipy.signal import TransferFunction, freqs # 定义系统传递函数 H(s)=Vout/Vin def pierce_oscillator_model(Rl=1e3, Cc=10e-12, Lq=10e-9): s = complex(0, 1) # 计算角频率 w 和品质因数 Q w = 1 / np.sqrt(Lq * Cc) Q = Rl * np.sqrt(Cc/Lq) num = [w*w] den = [1, w/Q, w*w] sys = TransferFunction(num, den) return sys sys = pierce_oscillator_model() w, mag, phase = freqs(sys.num, sys.den) print("Frequency Response Analysis Complete.") ``` 此脚本创建了一个理想化的二阶低通滤波器作为近似表示,并分析了系统的频域响应特征。实际应用中还需要考虑更多细节,例如温度变化对晶体性能的影响等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值