微分方程与传递函数

一、RC电路的微分方程与传递函数

根据电路关系可得:Ur=I*R+Uc,I=dUc/dt

\Rightarrow Ur=RC*dUc/dt+Uc  

在零初始条件下,对方程组两边同时做拉氏变换得

Ur(s)=R*C*S*Uc(s)+Uc(S)

其传递函数为:G(s)=Uc(s)/Ur(s)=1/(R*C*S+1)

令R*C=T,\Rightarrow G(s)=1/(T*S+1)

1/(T*S+1)是典型的惯性环节

二、LRC电路的微分方程与传递函数

根据电路关系可得:Ur=L*di/dt+I*R+Uc,I=dUc/dt

\Rightarrow Ur=LC*d^2Uc/dt^2+RC*dUc/dt+Uc

在零初始条件下,对方程组两边同时做拉氏变换得

Ur(s)=LC*S^2*Uc(s)+R*C*S*Uc(s)+Uc(S)

其传递函数为:G(s)=Uc(s)/Ur(s)=1/(LC*S^2+R*C*S+1)

三、典型运动系统微分方程与传递函数

如图所示,a点的位移为yi(t),质量块m的位移为y0(t),k为弹簧的弹性系数,f为质量块m运动时的摩擦系数。

m*d^2yo(t)/dt^2=k*(yi(t)-yo(t))-f*dyo(t)/dt

在零初始条件下,对方程组两边同时做拉氏变换得

k*Yi(s)=m*s^2Yo(s)+f*s*Yo(s)+k*Yo(s)

其传递函数为:G(s)=Yo(s)/Yi(s)=k/(m*S^2+f*S+k)

四、阻抗法求传递函数

阻抗,简单的说就是阻碍作用,是广义上的等效电阻。

1、电阻元件

U=i(t)*R

等式两边做拉氏变换得:U(s)=R*I(s)

可得电阻元件的阻抗为:Zr=R=U(s)/I(s)

2、电感元件

U(t)=L*di/dt

等式两边做拉氏变换得:U(s)=L*S*I(s)

可得电阻元件的阻抗为:ZL=L*S=U(s)/I(s)

3、电容元件

U(t)=∫i(t)dt/C

等式两边做拉氏变换得:U(s)=I(s)/CS 

可得电容元件的阻抗为:Zc=1/CS=U(s)/I(s)

4、阻抗的串并联

阻抗的串联:Z=z1+z2

阻抗的并联:1/Z=1/Z1+1/Z2

5、阻抗与传递函数的关系

输入阻抗(input impedance)是指一个电路输入端的等效阻抗。

输出阻抗(output impedance)是在出口处测得的阻抗(将输出端示为输入端的输入阻抗)。

传递函数=输出阻抗/输入阻抗。

例 求RC电路的传递函数(电路图如上述所示)

输入阻抗Zi(s)=R+1/(C*S),输出阻抗Zo(s)=1/(C*S)

传递函数G(s)=Zo(s)/Zi(s)=1/(R*C*S+1),其运算结果与(一)相同。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值