一、RC电路的微分方程与传递函数
根据电路关系可得:Ur=I*R+Uc,I=dUc/dt
在零初始条件下,对方程组两边同时做拉氏变换得
其传递函数为:
令R*C=T,
1/(T*S+1)是典型的惯性环节
二、LRC电路的微分方程与传递函数
根据电路关系可得:Ur=L*di/dt+I*R+Uc,I=dUc/dt
在零初始条件下,对方程组两边同时做拉氏变换得
其传递函数为:
三、典型运动系统微分方程与传递函数
如图所示,a点的位移为yi(t),质量块m的位移为y0(t),k为弹簧的弹性系数,f为质量块m运动时的摩擦系数。
在零初始条件下,对方程组两边同时做拉氏变换得
k*Yi(s)=m*s^2Yo(s)+f*s*Yo(s)+k*Yo(s)
其传递函数为:
四、阻抗法求传递函数
阻抗,简单的说就是阻碍作用,是广义上的等效电阻。
1、电阻元件
U=i(t)*R
等式两边做拉氏变换得:U(s)=R*I(s)
可得电阻元件的阻抗为:Zr=R=U(s)/I(s)
2、电感元件
U(t)=L*di/dt
等式两边做拉氏变换得:U(s)=L*S*I(s)
可得电阻元件的阻抗为:ZL=L*S=U(s)/I(s)
3、电容元件
U(t)=∫i(t)dt/C
等式两边做拉氏变换得:U(s)=I(s)/CS
可得电容元件的阻抗为:Zc=1/CS=U(s)/I(s)
4、阻抗的串并联
阻抗的串联:Z=z1+z2
阻抗的并联:1/Z=1/Z1+1/Z2
5、阻抗与传递函数的关系
输入阻抗(input impedance)是指一个电路输入端的等效阻抗。
输出阻抗(output impedance)是在出口处测得的阻抗(将输出端示为输入端的输入阻抗)。
传递函数=输出阻抗/输入阻抗。
例 求RC电路的传递函数(电路图如上述所示)
输入阻抗Zi(s)=R+1/(C*S),输出阻抗Zo(s)=1/(C*S)
传递函数G(s)=Zo(s)/Zi(s)=1/(R*C*S+1),其运算结果与(一)相同。