论文研读 | 解耦动态时空图神经网络交通预测

Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

本文是由中科院大学2022年发表于VLDB会议的一篇文章,作者创新地提出了一种解耦时空框架——DSTF,提升了模型在交通流预测任务中的性能,并在两个真实数据集上进行了验证。作者通过将先验知识融合进模型结构中,从而提升模型性能的思路值得借鉴,以下对论文进行分享介绍。

1.Introduction

交通预测是智能交通系统(Intelligent Transportation Systems, ITS)中的一项重要服务,它根据传感器观测到的历史交通状况来预测未来的交通状况(如交通流)。这一功能促进了与交通管理、城市计算、公共安全等相关的广泛服务。以往的流量预测研究通常分为两类,即知识驱动的和数据驱动的。前者通常采用排队论对交通中的用户行为进行仿真,而忽略了现实交通流的自然复杂性。对于后者,许多早期研究将问题描述为一个简单的时间序列(如单变量时间序列)预测任务,并通过各种传统的基于统计的方法来解决它,如自回归综合移动平均(ARIMA)和卡尔曼滤波。这些方法并不能很好地处理每个时间序列的高非线性,因为它们通常严重依赖于平稳性相关的假设。更重要的是,它们忽略了时间序列之间复杂的相关性,严重限制了交通预测的有效性。

最近,基于深度学习的方法被提出来捕捉交通流中复杂的时空相关性。一种有效的方法是通过构建邻接矩阵来建模复杂的路网空间拓扑结构,将交通数据表示为时空图。如图1(a)所示,其中每个节点代表一个传感器,每个节点上的信号随时间变化。因此,基于stgnn的方法被提出用于交通预测,将交通流量的动态建模为扩散过程,并结合扩散图卷积和序列模型来联合建模复杂的时空相关性。前者对道路网络中车辆在传感器之间的扩散进行建模,即空间依赖性;后者对时间动态性进行建模,即时间依赖性。

图1

图1

尽管已经取得了令人鼓舞的结果,但这些方法仍然未能充分利用复杂的时空相关性。首先,每个信号(即时间序列)自然地包含两种不同类型的信号,即扩散信号和非扩散信号(为简单起见,也称为固有信号)。扩散信号捕获从其他传感器扩散过来的车辆,非扩散信号捕获不依赖于其他传感器的车辆。然而,以往的研究几乎都将交通数据视为扩散信号而忽略了非扩散信号。也就是说,它们对复杂的时空相关性进行粗略建模。然而,一个合理的解决方案是更微妙地利用复杂的时空相关性,即同时显式地对扩散和固有信号进行建模。其次,基于stgnn的方法预定义的邻接矩阵是静态的,这类构建方法可能严重限制了对复杂路网的表征能力,难以对交通流进行动态建模。用图2中的例子来说明它们。在不失一般性的情况下,图2展示了一个典型的交通流系统。在路网的重要位置安装交通传感器,记录单位时间内的交通流数据,即车辆数量。从图2中,可以总结如下。(I)每个传感器的记录值受两个因素的影响,即扩散信号和非扩散信号。如图2(a)所示,上午8点通过传感器2(绿色箭头)的车辆来自两个部分。第一部分是直接从传感器附近某处出发的车辆(蓝色箭头),例如,直接从住宅开车到商业区上班的车辆。另一部分是从相邻区域扩散开来的车辆(酒红色箭头),例如从工业区(传感器3)和农业区(传感器4)行驶以提供日常用品的车辆。前者是独立于其他传感器的,而后者是扩散过程的伪影。分别称它们为隐藏固有时间序列和隐藏扩散时间序列,图2(b)中的每个时间序列都是它们的叠加。(2)同一路网内的交通流量会随时间发生变化,即空间依赖性是动态变化的。图2(c)显示了一个例子,传感器3和4的交通可以显著影响传感器2在上午8点,而在上午10点只有很小的影响。

图2

图2

因此,解决上述问题,有效利用交通数据中所有复杂的时空相关性,对于提高交通预测性能至关重要。为了实现这一点,论文提出了一个解耦的时空框架(DSTF),如图1(b)所示。DSTF以数据驱动的方式,利用解耦块将扩散信息与固有交通信息分离。设计了一个基于自注意力机制的动态图学习模块来解决第二个问题。上述设计是DSTF实例化的关键元素,称为解耦动态时空图神经网络(D2STGNN)。具体而言,首先设计了如图3所示的解耦模块,其中包含残差分解机制和估计门,对流量数据进行分解。前者去除了扩散模型和固有模型能很好逼近的部分信号;因此,学习不好的信号部分会被保留。后者粗略估计两种信号的比例,以缓解每层第一个模型的负担,该模型将原始信号作为输入,需要学习其中特定部分。其次,动态图学习模块基于自注意力机制学习时间序列之间的潜在关联,综合利用可用信息来调整基于路网的空间依赖关系;此外,针对两种隐时间序列的特点,分别设计了专门的扩散模型和固有模型。设计时空局部卷积对隐扩散时间序列进行建模。联合使用循环神经网络和自注意力机制对隐藏的固有时间序列进行建模。

总结来说,作者发现目前交通流预测模型中存在的两个问题,即(1)目前大部分模型主要关注于交通流的扩散过程,而忽略了交通流在各个节点中的生成过程。(2)目前大部分模型的图结构都是静态图,而交通网络关系是动态的,会随着时间变化的。针对这两个问题,论文提出了两个对应的方法解决:

(1)提出一种新的解耦时空框架(DSTF)用于流量预测,将扩散过程产生的隐藏时间序列与独立于其他传感器的隐藏时间序列解耦。这使得可以对交通数据的不同部分进行更精确的建模,以提高预测精度。

(2)在DSTF的基础上,提出了一个动态图学习模块,该模块考虑了空间依赖的动态性。此外,设计了扩散模型和固有模型来处理这两个隐藏的时间序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值