本文是2022年IJGI上的一篇文章,作者创新地提出了一种混合神经网络模型GCTN(graph convolutional and comprehensive temporal neural network),该模型结合Transformer和LSTM捕捉全局和局部的时间依赖关系,此外使用GCN捕捉地铁网络的空间特征。结果表明该模型在客流高峰和快速变化时期具有更好的性能。
A Comprehensive Spatio-Temporal Model for Subway Passenger Flow Prediction
1. 背景
1.1 背景
随着城市人口的不断增加,城市交通也在迅速扩张,这对城市的可持续发展提出了新的挑战。与私家车相比,城市轨道交通可以减少与交通相关的能源消耗、出行成本、交通拥堵和环境污染。同时,研究表明,在城市轨道交通强度较高的城市,汽车保有量的增长相对较慢。因此,地铁、公交等公共交通设施在实现城市可持续发展中发挥着更加重要的作用。其中,由于交通流量大、运营速度快、占地面积小,地铁交通系统是消除城市交通束缚、缓解城市交通拥堵、构建城市立体交通系统的重要措施。此外,地铁排放的污染物更少,节约能源。因此,一个及时有效的地铁交通系统至关重要。
为了避免地铁资源不足导致的交通拥堵或交通瘫痪,可以利用客流预测来实现交通资源的有效分配。机器学习方法可以通过足够的历史观测获得交通数据的非线性特征和统计规律,可以处理统计方法的问题,但在节点众多的复杂网络中很难取得良好的结果。它们主要依赖于复杂的手动特征工程,这导致对海量数据建模缺乏鲁棒性,并且无法处理原始时空数据。因此,机器学习方法很难在丰富的时空数据的基础上获得最佳的预测结果。
深度学习方法可以自动建立特征工程并改进特征表达。此外,深度学习模型在捕捉非线性和复杂模式方面具有优势,这可以帮助它们获得更准确的结果。交通流预测本质上依赖于历史观测。因此,时间依赖是不可或缺的一部分。然而,一些深度学习模型只考虑了客流的时间依赖性,而忽略了空间依赖性。这样,交通预测就脱离了道路和车站等空间因素。通过整合空间相关性,可以进一步提高模型的准确性。因此,针对单一模型在客流预测中的不足,一些研究引入CNN对空间依赖性进行建模,并将其与RNN 模型及其变体模型。
由于地铁网络的非欧氏和时变特性,CNN很难描述复杂的空间拓扑关系。因此,一些深度学习模型引入了图卷积神经网络(GCN),以改进对客流中时空特征的捕获。同时,RNN模型在捕捉时间依赖性方面存在局限性。注意力模型可以捕捉全局和动态时空特征,这有助于预测。一些深度学习模型将注意力模型引入交通流预测领域。然而,一些知识差距仍然存在。统计方法很难捕捉复杂的特征。机器学习方法在很大程度上依赖于人工设计的特性。
关于深度学习方法,现有模型仍存在以下差距:
a. 在地铁客流预测中,大多数基于GCN的方法忽略了对相邻矩阵的改进。首先,他们忽视了地铁站进出口的空间影响。其次,他们忽视了全局对局部的影响。
b. 大多数方法基于单个模型来捕获时间依赖性,例如RNN模型及其变体或Transformer 模型。然而,这些模型在捕捉所有时间特征方面仍然存在局限性。
c. 交通预测通常分为两个尺度,即短期(<30分钟)和长期。目前,地铁客流预测多为短期预测。然而,长期流量预测也非常重要,可以为运营调度提供更充分的准备。