水上交通预测可包括船舶轨迹预测和船舶交通流量预测。两者本质上都属于时间序列预测的范围,不过前者包含有经纬度等空间信息。目前主流方法集中在机器学习和深度学习,如何利用现有问题的结构和属性,开发强有力的方法以提高预测的精度,是水上交通预测的关键。
本期主题为船舶轨迹预测,船舶轨迹预测使用数据挖掘等技术来分析历史船舶轨迹数据和当前船舶状态信息,以准确预测船舶未来可能的位置,是实现船舶碰撞预警、保障海上安全的关键。
面向智能交通系统船舶轨迹预测的双向信息融合驱动深度网络(Bi-directional information fusion-driven deep network for ship trajectory prediction in intelligent transportation systems)
Author: Huanhuan Li,Wenbin Xing,Hang Jiao, Kum Fai Yuen , Ruobin Gao , Yan Li,Christian Matthewsf, Zaili Yang
Year: 2024, December.
Issue: Transportation Research Part E. December 2024, 103770.
Group: Liverpool John Moores University.
01 背景介绍
1 问题背景
该篇文章主要系统地解决三个主要问题:(1)船舶轨迹预测问题本质的研究综述问题(2)提高预测精度的网络结构创新性问题(3)不同交通场景的综合评价指标设计问题。
02 方法介绍
1 模型本质
提出的模型是 Triple Bidirectional Enhanced Network (TBENet),采用独特的三层架构,由 BiGRU&#x