Given two words (
start and
end), and a dictionary, find the length of shortest transformation sequence from
start to
end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
class Solution {
public:
int ladderLength(string start, string end, unordered_set<string> &dict) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(start.compare(end) == 0)
return 0;
//int count = 0;
unordered_map<int, string> mp;
unordered_map<string, int> inverse;
unordered_set<string> vis;
queue<string> q;
int count = 1;
int deep = 1;
int len = start.length();
q.push(start);
while(count > 0)
{
while(count > 0)
{
string temp = q.front();
if(temp.compare(end) == 0)
return deep;
q.pop();
for(int i = 0; i < len; i++)
{
char x = temp[i];
for(char c = 'a'; c <= 'z'; c++)
{
temp[i] = c;
if(dict.count(temp) && !vis.count(temp))
{
vis.insert(temp);
q.push(temp);
}
}
temp[i] = x;
}
count--;
}
count = q.size();
deep ++;
}
return 0;
}
};