Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.For example, given s = "aab",Return [ ["aa","b"], ["a","a","b"] ]
class Solution {
vector<vector<string>> retVString;
bool palin[1500][1500];
public:
vector<vector<string>> partition(string s) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(s.size() == 0)
return vector<vector<string>>();
int leng = s.size();
for(int i = 0; i < leng; i++)
for(int j = 0; j < leng; j++)
palin[i][j] = false;
for(int i = leng-1; i >= 0; i--){
for(int j = i; j < leng; j++){
if(s[i] == s[j] && (j-i<2 || palin[i+1][j-1])){
palin[i][j] = true;
}
}
}
retVString.clear();
dfs(s, 0, vector<string>());
return retVString;
}
void dfs (string& s, int start, vector<string> palinStr)
{
if(start == s.size())
{
retVString.push_back(palinStr);
}
for(int i = start; i < s.size(); i++)
{
if(palin[start][i])
{
palinStr.push_back(s.substr(start, i - start + 1));
dfs(s, i+1, palinStr);
palinStr.pop_back();
}
}
}
};
递归的写法问题:
关于分割问题的dp和递归的写法,有两种:f(start,end)= f(start, k) + f(k+1, end)和f(div)= f(div+1) + XXX。这两种写法看待的子问题不同,第一种是将一个大问题在k处分开,分为两个,对于dp的写法是开一个二维的矩阵,从对角线向右上角移动(习惯),会写3层嵌套循环。第二种写法,也是将一个问题分解为两个字问题,但不同之处在于子问题f(start,div)已经解决,只要解决f(div+1,end)的字问题。这种写法只需2层嵌套循环。这两种看法的递归写法也不同,第二种递归写法方便记录中各种可能解(div == end时),而第一种则没有办法判定可能解是否已得到,需要额外记录。