直线绘制算法-数值微分法(DDA)

DDA算法用于在计算机屏幕上逼近显示直线。它通过每次在x方向上增加固定值来计算新的y坐标,利用加法提高运算效率。在斜率k较大时,直接使用x增量会导致像素点离散,可以通过改写直线方程优化逼近效果。当斜率在[-1,1]区间,使用方程;斜率在(1,+∞]或[-∞,-1),使用方程。" 51422954,2421037,Linux下system()与popen()的区别解析,"['Linux系统调用', '进程管理', 'C语言编程', 'POSIX标准']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.DDA算法

直线在数学上是由无数个点构成,但是由于计算机显示器是由有限个像素点组成。因此需要用有限个点去逼近无限个点,以实现直线在屏幕上显示。如下图所示,绿色线段为理想线段,黑色像素点为逼近的线段。

1.由于像素点的离散性,在x方向上,每次增量为\Delta x=1,则直线段上前一个点与后一个点具有以下关系。

y_{i}=kx_{i}+b

y_{i+1}^{}=k(x_{i}+1)+b=kx_{i}+b+k=y_{i}+k

若已知直线段上一个点的坐标以及直线段斜率k,则可根据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

着风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值