数据结构篇——AVL树

本文详细介绍了AVL树的基本概念,包括其平衡条件和组成特点。在插入操作中,讨论了四种可能导致不平衡的情况及对应的单旋转和双旋转调整策略。删除操作与普通二叉搜索树相似,但需要额外进行平衡调整。文中还概述了插入和删除的实现过程,包括获取树的高度和执行旋转操作的函数。
摘要由CSDN通过智能技术生成

目录

AVL树

AVL树的定义

AVL树插入

单旋转

双旋转

实现

AVL树的删除

实现


AVL树

AVL树是一种带有平衡条件的二叉搜索树,它保证每个节点的左子树和右子树高度最多差1。

组成高度为h的AVL树,需要最少的节点数S(h) = S(h-1) + S(h-2) + 1,如下图,这个高度为4的AVL树由三部分组成,左子树,右子树和根节点,左子树是高度为2,右子树高度是3,两棵子树都要求节点树最小,分别是S(2)和S(3),最后再加上根节点一个节点。所以高度为4的AVL树,需要的最少节点为S(4) = S(3) + S(2) + 1

AVL树的定义

typedef struct avlNode{
    int element = 0;
    avlNode *left = NULL;
    avlNode *right = NULL;
    int height = 0;
}avlNode;

AVL树插入

每次插入一个节点时,我们必须更新从插入节点到根节点的所有信息。插入一个节点后导致树从节点N开始不平衡,有如下四种情况:

1. 对N的左儿子(L)的左子树(L)进行了插入。(LL)

2. 对N对左儿子(L)对右子树(R)进行了插入。(LR)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值