目录
一些数学定义
给定两个函数f和g,
1. 如果有正的常数c和n,使得当N≥n时,f(N) ≤ g(N),那么f(N) = O(g(N))
2. 如果有正的常数c和n,使得当N≥n时,f(N) ≥ g(N),那么f(N) = Ω(g(N))
3. 如果f(N) = O(g(N)),并且f(N) = Ω(g(N)),那么f(N) = Θ(g(N))
以上的定义在函数之间建立了一种级别,增长率高的,级别要高,比如。
对于和,虽然当x较小时,f较大,但是g的增长率更大,当x≥1000时,f≤g,所以有f = O(g).
我们比较两个函数时,通常忽略系数和较低项,只保留最高项对比,比如和