常微分方程 笔记

常微分方程 笔记

概述

定义

  • 自变量唯一的微分方程

  • 定义:微分方程未知函数的最高阶导数或微分的阶数
  • 一般形式: F ( x , y , d y d x , … , d n y d x n ) = 0 F(x,y,\frac{dy}{dx},\dots,\frac{d^ny}{dx^n})=0 F(x,y,dxdy,,dxndny)=0

线性与非线性

  • 定义:若方程 F ( x , y , d y d x , … , d n y d x n ) = 0 F(x,y,\frac{dy}{dx},\dots,\frac{d^ny}{dx^n})=0 F(x,y,dxdy,,dxndny)=0 y , d y d x , … , d n y d x n y,\frac{dy}{dx},\dots,\frac{d^ny}{dx^n} y,dxdy,,dxndny 的一次有理式,则其为n阶线性方程
  • 一般形式: d n y d x n + a 1 ( x ) d n − 1 y d x n − 1 + ⋯ + a n ( x ) y = f ( x ) \frac{d^ny}{dx^n}+a_1(x)\frac{d^{n-1}y}{dx^{n-1}}+\dots+a_n(x)y=f(x) dxndny+a1(x)dxn1dn1y++an(x)y=f(x)

  • 定义:
    • y = φ ( x ) y=\varphi(x) y=φ(x) I I I上有直到 n n n阶的连续导数
    • y = φ ( x ) y=\varphi(x) y=φ(x) 为方程 F ( x , y , d y d x , … , d n y d x n ) = 0 F(x,y,\frac{dy}{dx},\dots,\frac{d^ny}{dx^n})=0 F(x,y,dxdy,,dxndny)=0 I I I上的一个解
  • 显式/隐式解:
    • 隐式:最终解的形式为隐函数
    • 显式:如解的定义中所描述的形式
  • 通/特解:
    • 通解:解中含有相互独立的任意常数,且其常数个数与微分方程的阶数相同。形如 y = φ ( x , c 1 , … , c n ) y=\varphi(x,c_1,\dots,c_n) y=φ(x,c1,,cn)
      • 独立常数:
      • ∂ ( φ , φ ′ , … , φ ( n − 1 ) ∂ ( c 1 , c 2 , … , c n ) = \frac{\partial(\varphi,\varphi',\dots,\varphi^{(n-1)}}{\partial(c_1,c_2,\dots,c_n)} = (c1,c2,,cn)(φ,φ,,φ(n1)=
      • ∣ ∂ φ ∂ c 1 ⋯ ∂ φ ∂ c n ⋮ ⋱ ⋮ ∂ φ ( n − 1 ) ∂ c 1 ⋯ ∂ φ ( n − 1 ) ∂ c n ∣ ≠ 0 \left|\begin{matrix}\frac{\partial\varphi}{\partial c_1} & \cdots & \frac{\partial\varphi}{\partial c_n}\\\vdots & \ddots & \vdots\\\frac{\partial\varphi^{(n-1)}}{\partial c_1} & \cdots & \frac{\partial\varphi^{(n-1)}}{\partial c_n}\end{matrix}\right|\ne 0 c1φc1φ(n1)cnφcnφ(n1)=0
      • (雅可比行列式)
    • 特解:给定常数确定值得到的解
  • 定解条件:实际问题附加给微分方程的条件,求解该类问题为定解问题
    • 初始条件(初值问题): x = x 0 x=x_0 x=x0 y = y 0 , d y d x = y 0 ( 1 ) , … , d ( n − 1 ) y d x ( n − 1 ) = y 0 ( n − 1 ) y=y_0,\frac{dy}{dx}=y_0^{(1)},\dots,\frac{d^{(n-1)}y}{dx^{(n-1)}}=y_0^{(n-1)} y=y0,dxdy=y0(1),,dx(n1)d(n1)y=y0(n1)
  • 驻定方程: d y d t = f ( y ) , y ∈ D ⊆ R n \frac{dy}{dt}=f(y),y\in D\subseteq R^n dtdy=f(y),yDRn,即右侧不含自变量 t t t,则方程驻定/自治。
  • 相空间:不含自变量,仅含有未知函数组成的空间,积分曲线在相空间的投影为轨线
  • f ( y ) = 0 的 解 y = y ∗ f(y)=0的解y=y^* f(y)=0y=y对应常数解 y ( t ) ≡ y ∗ y(t)\equiv y^* y(t)y 该解也称为平衡解、驻定解或奇点、平衡点。

一阶微分方程 初等解法

变量分离方程

  • ⇒ d y d x = f ( x ) φ ( y ) ⇒ d y φ ( y ) = f ( x ) d x ⇒ ∫ d y φ ( y ) = ∫ f ( x ) d x \Rightarrow \frac{dy}{dx}=f(x)\varphi(y) \\ \Rightarrow \frac{dy}{\varphi(y)}=f(x)dx \\ \Rightarrow \int\frac{dy}{\varphi(y)}=\int f(x)dx dxdy=f(x)φ(y)φ(y)dy=f(x)dxφ(y)dy=f(x)dx
  • 其中 f ( x ) 、 φ ( y ) f(x)、\varphi(y) f(x)φ(y)分别关于 x x x y y y连续

可化为变量分离

  • 齐次方程:
    • d y d x = g ( y x ) d y d x = g ( y x ) ⇒ u = y x x d u d x + u = g ( u ) \frac{dy}{dx}=g(\frac{y}{x}) \\ \frac{dy}{dx}=g(\frac{y}{x}) \xRightarrow{u = \frac{y}{x}}x\frac{du}{dx}+u=g(u) dxdy=g(xy)dxdy=g(xy)u=xy xdxdu+u=g(u)(变量分离方程)
    • d y d x = a 1 x + b 1 y + c 1 a 2 x + b x y + c 2 \frac{dy}{dx}=\frac{a_1x+b_1y+c_1}{a_2x+b_xy+c_2} dxdy=a2x+bxy+c2a1x+b1y+c1
      • c 1 = c 2 = 0 c_1=c_2=0 c1=c2=0 d y d x = a 1 x + b 1 y + c 1 a 2 x + b x y + c 2 = a 1 + b 1 y x a 2 + b 2 y x = g ( y x ) \frac{dy}{dx}=\frac{a_1x+b_1y+c_1}{a_2x+b_xy+c_2}=\frac{a_1+b_1\frac{y}{x}}{a_2+b_2\frac{y}{x}}=g(\frac{y}{x}) dxdy=a2x+bxy+c2a1x+b1y+c1=a2+b2xya1+b1xy=g(xy)(类似第一种形式的齐次方程)
      • ∣ a 1 a 2 b 1 b 2 ∣ = 0 \left|\begin{matrix}a_1 & a_2 \\ b_1 &b_2\end{matrix}\right|=0 a1b1a2b2=0

        ⇒ a 1 a 2 = b 1 b 2 = k ⇒ d y d x = k ( a 2 x + b 2 y ) + c 1 a 2 x + b x y + c 2 = f ( a 2 x + b 2 y ) = f ( u ) ⇒ d u d x = a 2 + b 2 d y d x = a 2 + b 2 f ( u ) \Rightarrow\frac{a_1}{a_2}=\frac{b_1}{b_2}=k \\ \Rightarrow\frac{dy}{dx}=\frac{k(a_2x+b_2y)+c_1}{a_2x+b_xy+c_2}=f(a_2x+b_2y)=f(u) \\ \Rightarrow\frac{du}{dx}=a_2+b_2\frac{dy}{dx}=a_2+b_2f(u) a2a1=b2b1=kdxdy=a2x+bxy+c2k(a2x+b2y)+c1=f(a2x+b2y)=f(u)dxdu=a2+b2dxdy=a2+b2f(u)(变量分离方程)
      • ∣ a 1 a 2 b 1 b 2 ∣ ≠ 0 \left|\begin{matrix}a_1 & a_2 \\ b_1 &b_2\end{matrix}\right|\ne 0 a1b1a2b2=0 c 1 ≠ c 2 c_1\ne c_2 c1=c2

        ⇒ { a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0 ⇒ { x = α y = β 原 ⇒ X = x − α , Y = y − β d Y d X = a 1 X + b 1 Y a 2 X + b 2 Y = g ( Y X ) ⇒ u = Y X ( 变 量 分 离 方 程 ) \Rightarrow \begin{cases}a_1x+b_1y+c_1=0 \\ a_2x+b_2y+c_2=0\end{cases} \Rightarrow\begin{cases}x=\alpha\\y=\beta\end{cases} \\ 原\xRightarrow{X=x-\alpha,Y=y-\beta} \frac{dY}{dX}=\frac{a_1X+b_1Y}{a_2X+b_2Y}=g(\frac{Y}{X}) \\ \xRightarrow{u=\frac{Y}{X}}(变量分离方程) {a1x+b1y+c1=0a2x+b2y+c2=0{x=αy=βX=xα,Y=yβ dXdY=a2X+b2Ya1X+b1Y=g(XY)u=XY ()

线性微分方程

  • 一阶齐次:      d y d x = P ( x ) y ⇒ y = c e ∫ P ( x ) d x \frac{dy}{dx}=P(x)y \Rightarrow y=ce^{\int P(x)dx} dxdy=P(x)yy=ceP(x)dx
  • 一阶非齐次: d y d x = P ( x ) y + Q ( x ) \frac{dy}{dx}=P(x)y+Q(x) dxdy=P(x)y+Q(x)
    • 常数变易法:对应齐次方程解 y = c e ∫ P ( x ) d x ⇒ y = c ( x ) e ∫ P ( x ) d x y=ce^{\int P(x)dx} \Rightarrow y=c(x)e^{\int P(x)dx} y=ceP(x)dxy=c(x)eP(x)dx,使之为原方程的解
      c ( x ) = ∫ Q ( x ) e − ∫ P ( x ) d x d x + c ~ y = e ∫ P ( x ) d x ( ∫ Q ( x ) e − ∫ P ( x ) d x d x + c ~ ) c(x)=\int Q(x)e^{-\int P(x)dx}dx+\tilde{c} \\ y=e^{\int P(x)dx}(\int Q(x)e^{-\int P(x)dx}dx+\tilde{c}) c(x)=Q(x)eP(x)dxdx+c~y=eP(x)dx(Q(x)eP(x)dxdx+c~)
  • Bernoulli方程: d y d x = p ( x ) y + Q ( x ) y n ⇒ z = y 1 − n d z d x = ( 1 − n ) p ( x ) z + ( 1 − n ) Q ( x ) \frac{dy}{dx}=p(x)y+Q(x)y^n\xRightarrow{z=y^{1-n}}\frac{dz}{dx}=(1-n)p(x)z+(1-n)Q(x) dxdy=p(x)y+Q(x)ynz=y1n dxdz=(1n)p(x)z+(1n)Q(x)

恰当方程与积分因子

  • M ( x , y ) d x + N ( x , y ) d y = 0 M(x,y)dx+N(x,y)dy=0 M(x,y)dx+N(x,y)dy=0 其中 d u ( x , y ) = M ( x , y ) d x + N ( x , y ) d y du(x,y)=M(x,y)dx+N(x,y)dy du(x,y)=M(x,y)dx+N(x,y)dy
    (即某个函数的全微分形式)
  • 恰当的充要条件: ∂ M ( x , y ) ∂ y = ∂ N ( x , y ) ∂ x \frac{\partial M(x,y)}{\partial y}=\frac{\partial N(x,y)}{\partial x} yM(x,y)=xN(x,y)
  • 求解:
    • 直接积分: u ( x , y ) = ∫ M ( x , y ) d x + φ ( y ) ∂ u ∂ y = N ( x , y ) ⇒ φ ( y ) u(x,y)=\int M(x,y)dx+\varphi(y) \\ \frac{\partial u}{\partial y}=N(x,y)\Rightarrow \varphi(y) u(x,y)=M(x,y)dx+φ(y)yu=N(x,y)φ(y)
    • 分组凑微分:对部分项进行重组成新的全微分。
      • 常用全微分:
    • 线积分: ∫ x 0 x M ( x , y 0 ) d x + ∫ y 0 y N ( x 0 , y ) = c \int^{x}_{x_0}M(x,y_0)dx+\int^{y}_{y_0}N(x_0,y)=c x0xM(x,y0)dx+y0yN(x0,y)=c
  • 积分因子:存在 μ ( x , y ) ≠ 0 \mu(x,y)\ne 0 μ(x,y)=0,使得 μ ( x , y ) M ( x , y ) d x + μ ( x , y ) N ( x , y ) d y = 0 \mu(x,y)M(x,y)dx+\mu(x,y)N(x,y)dy=0 μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=0 为恰当方程,即对非恰当方程乘以一个积分因子 μ ( x , y ) \mu(x,y) μ(x,y)使之成为恰当方程。
    • 积分因子充要条件及其求得:
    • ∂ μ ( x , y ) M ( x , y ) ∂ y = ∂ μ ( x , y ) N ( x , y ) ∂ x ⇒ N ∂ μ ∂ x − M ∂ μ ∂ y = ( ∂ M ∂ y − ∂ N ∂ x ) μ 当 因 子 仅 与 x 有 关 时 ⇒ d μ μ = ∂ M ∂ y − ∂ N ∂ x N d x ⇒ μ ( x ) = e ∫ ∂ M ∂ y − ∂ N ∂ x N d x 同 理 , 当 因 子 仅 与 y 有 关 时 ⇒ μ ( y ) = e ∫ ∂ M ∂ y − ∂ N ∂ x − M d y \frac{\partial\mu(x,y)M(x,y)}{\partial y}=\frac{\partial\mu(x,y)N(x,y)}{\partial x} \\ \Rightarrow N\frac{\partial\mu}{\partial x}-M\frac{\partial\mu}{\partial y}=(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x})\mu \\ 当因子仅与x有关时 \\ \Rightarrow \frac{d\mu}{\mu}=\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}dx \\ \Rightarrow \mu(x)=e^{\int\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}dx} \\ 同理,当因子仅与y有关时 \\ \Rightarrow \mu(y)=e^{\int\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{-M}dy} yμ(x,y)M(x,y)=xμ(x,y)N(x,y)NxμMyμ=(yMxN)μxμdμ=NyMxNdxμ(x)=eNyMxNdxyμ(y)=eMyMxNdy
    • 两个积分因子都可以通过定义来计算,但这样比较繁琐。
      • 尝试计算 ψ \psi ψ φ \varphi φ,看看是否真的与x,y无关,并求解。
      • 若能猜测积分因子的基本形式,可进行假设,然后根据恰当方程的定义求解。
      • 试图直接找出原本微分方程的全微分形式,并加以求解。

一阶隐式方程及参数表示

  • 一般形式: F ( x , y , y ′ ) = 0 F(x,y,y')=0 F(x,y,y)=0,引入参数,转化为可解类型
  • y = f ( x , y ′ ) y=f(x,y') y=f(x,y)
    • ⇒ d y d x = p y = f ( x , p ) ⇒ p = ∂ f ∂ x + ∂ f ∂ p ∂ p ∂ x \xRightarrow{\frac{dy}{dx}=p}y=f(x,p) \\ \Rightarrow p=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial p}\frac{\partial p}{\partial x} dxdy=p y=f(x,p)p=xf+pfxp (可由前面的方法求解)
    • { p = φ ( x , c ) → y = f ( x , φ ( x , c ) ) x = ψ ( p , c ) → { x = ψ ( p , c ) y = f ( x , p ) ( 参 数 形 式 通 解 ) Φ ( x , p , c ) = 0 → { Φ ( x , p , c ) = 0 y = f ( x , p ) \begin{cases} p=\varphi(x,c) \rightarrow y=f(x,\varphi(x,c)) \\x=\psi(p,c)\rightarrow \begin{cases} x=\psi(p,c)\\y=f(x,p) \end{cases}(参数形式通解) \\ \Phi(x,p,c)=0 \rightarrow \begin{cases}\Phi(x,p,c)=0\\y=f(x,p)\end{cases}\end{cases} p=φ(x,c)y=f(x,φ(x,c))x=ψ(p,c){x=ψ(p,c)y=f(x,p)Φ(x,p,c)=0{Φ(x,p,c)=0y=f(x,p)
  • x = f ( y , y ′ ) x=f(y,y') x=f(y,y)
    • ⇒ d y d x = p y = f ( y , p ) ⇒ 1 p = ∂ f ∂ y + ∂ f ∂ p ∂ p ∂ y \xRightarrow{\frac{dy}{dx}=p}y=f(y,p) \\ \Rightarrow \frac{1}{p}=\frac{\partial f}{\partial y}+\frac{\partial f}{\partial p}\frac{\partial p}{\partial y} dxdy=p y=f(y,p)p1=yf+pfyp (可由前面的方法求解)
  • F ( x , y ′ ) = 0 F(x,y')=0 F(x,y)=0
    • f f f表示为参数曲线 { x = φ ( t ) p = y ′ = ψ ( t ) ⇒ { x = φ ( t ) y = ∫ ψ ( t ) φ ′ ( t ) d t + c \begin{cases} x=\varphi(t)\\p=y'=\psi(t)\end{cases} \\ \Rightarrow \begin{cases}x=\varphi(t)\\y=\int\psi(t)\varphi'(t)dt+c\end{cases} {x=φ(t)p=y=ψ(t){x=φ(t)y=ψ(t)φ(t)dt+c
  • F ( y , y ′ ) = 0 F(y,y')=0 F(y,y)=0
    • f f f表示为参数曲线 { y = φ ( t ) p = y ′ = ψ ( t ) ⇒ { x = ∫ φ ′ ( t ) ψ ( t ) d t + c y = φ ( t ) ⇒ { x = f ( y , p ) Φ ( y , p , c ) = 0 \begin{cases} y=\varphi(t)\\p=y'=\psi(t)\end{cases} \\ \Rightarrow \begin{cases}x=\int\frac{\varphi'(t)}{\psi(t)}dt+c\\y=\varphi(t)\end{cases} \\ \Rightarrow \begin{cases}x=f(y,p)\\\Phi(y,p,c)=0\end{cases} {y=φ(t)p=y=ψ(t){x=ψ(t)φ(t)dt+cy=φ(t){x=f(y,p)Φ(y,p,c)=0

一阶微分方程 解的存在唯一性定理

  • 初值问题的解是否存在?若存在,是否唯一?

解的存在唯一性定理与逐步逼近法

  • 讨论初值问题: { d y d x = f ( x , y ) y ( x 0 ) = y 0 \begin{cases}\frac{dy}{dx}=f(x,y)\\y(x_0)=y_0\end{cases} {dxdy=f(x,y)y(x0)=y0
  • Lipschitz条件: f ( x , y ) 为 处 于 矩 形 域 R : ∣ x − x 0 ∣ ≤ a , ∣ y − y 0 ∣ ≤ b 上 的 连 续 函 数 , ∣ f ( x , y 1 ) − f ( x , y 2 ) ∣ ≤ L ∣ y 1 − y 2 ∣ ( L 为 L i p s c h i t z 常 数 ) f(x,y)为处于矩形域 R:|x-x_0|\le a,|y-y_0|\le b上的连续函数,|f(x,y_1)-f(x,y_2)|\le L|y_1-y_2|(L为Lipschitz常数) f(x,y)R:xx0a,yy0bf(x,y1)f(x,y2)Ly1y2LLipschitz
  • 定理: f ( x , y ) f(x,y) f(x,y)满足Lipschitz条件,则初值问题在 ∣ x − x 0 ∣ ≤ h |x-x_0|\le h xx0h上的解存在且唯一,这里 h = min ⁡ ( a , b M ) , M = max ⁡ ( x , y ) ∈ R ∣ f ( x , y ) ∣ h=\min(a,\frac{b}{M}),M=\underset{(x,y)\in R}{\max}|f(x,y)| h=min(a,Mb),M=(x,y)Rmaxf(x,y)
    • 判定: f y f_y fy存在且有界 或 f y f_y fy连续
  • 证明思路:
    1. 初值问题的解等价于微分方程 y = y 0 + ∫ x 0 x f ( t , y ) d t y=y_0+\int_{x_0}^{x}f(t,y)dt y=y0+x0xf(t,y)dt 的连续解
    2. 构造近似解函数列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)}
    3. 函数列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)} [ x 0 − h , h 0 + h ] [x_0-h,h_0+h] [x0h,h0+h]上一致收敛于 φ ( x ) \varphi(x) φ(x)
    4. φ ( x ) \varphi(x) φ(x)是积分方程定义于 [ x 0 − h , h 0 + h ] [x_0-h,h_0+h] [x0h,h0+h]上的连续解且唯一
  • 命题1: y = φ ( x ) y=\varphi(x) y=φ(x)为原初值问题的解 ⇔ \Leftrightarrow y = φ ( x ) y=\varphi(x) y=φ(x)为方程 y = y 0 + ∫ x 0 x f ( t , y ) d t y=y_0+\int_{x_0}^{x}f(t,y)dt y=y0+x0xf(t,y)dt 的连续解
    • ⇒ : d φ ( x ) d x = f ( x , φ ( x ) ) ⇒ 定 积 分 φ ( x ) − φ ( x 0 ) = ∫ x 0 x f ( x , φ ( x ) ) d x ⇒ φ ( x ) = y 0 + ∫ x 0 x f ( x , φ ( x ) ) d x \Rightarrow:\frac{d\varphi(x)}{dx}=f(x,\varphi(x)) \\ \xRightarrow{定积分}\varphi(x)-\varphi(x_0)=\int_{x_0}^{x}f(x,\varphi(x))dx \\ \Rightarrow \varphi(x)=y_0+\int_{x_0}^{x}f(x,\varphi(x))dx dxdφ(x)=f(x,φ(x)) φ(x)φ(x0)=x0xf(x,φ(x))dxφ(x)=y0+x0xf(x,φ(x))dx
    • ⇐ : 对 上 述 步 骤 反 向 微 分 即 可 \Leftarrow:对上述步骤反向微分即可
  • 构造 P i c a r d Picard Picard逐步逼近序列: { φ 0 ( x ) = y 0 φ n ( x ) = y 0 + ∫ x 0 x f ( ξ , φ n − 1 ( ξ ) ) d ξ \begin{cases}\varphi_0(x)=y_0\\\varphi_n(x)=y_0+\int^x_{x_0}f(\xi,\varphi_{n-1}(\xi))d\xi\end{cases} {φ0(x)=y0φn(x)=y0+x0xf(ξ,φn1(ξ))dξ
  • 命题2: 对 于 一 切 n 和 x ∈ [ x 0 , x 0 + h ] , φ n ( x ) 连 续 且 有 ∣ φ n ( x ) − y 0 ∣ ≤ b 对于一切n和x\in[x_0,x_0+h],\varphi_n(x)连续且有|\varphi_n(x)-y_0|\le b nx[x0,x0+h]φn(x)φn(x)y0b(归纳法)
    • h = min ⁡ ( a , b M ) , M = max ⁡ ( x , y ) ∈ R ∣ f ( x , y ) ∣ h=\min(a,\frac{b}{M}),M=\underset{(x,y)\in R}{\max}|f(x,y)| h=min(a,Mb),M=(x,y)Rmaxf(x,y)
    • 当 n = 1 时 , φ 1 ( x ) = y 0 + ∫ x 0 x f ( ξ , y 0 ) d ξ 显 然 在 [ x 0 , x 0 + h ] 上 连 续 ∣ φ 1 ( x ) − y 0 ∣ = ∣ ∫ x 0 x f ( ξ , y 0 ) d ξ ∣ ≤ ∫ x 0 x ∣ f ( ξ , y 0 ) ∣ d ξ ≤ M ∣ x − x 0 ∣ ≤ M h ≤ b 当n=1时,\varphi_1(x)=y_0+\int^x_{x_0}f(\xi,y_0)d\xi显然在[x_0,x_0+h]上连续 \\|\varphi_1(x)-y_0|=|\int^x_{x_0}f(\xi,y_0)d\xi|\le \int^x_{x_0}|f(\xi,y_0)|d\xi\le M|x-x_0|\le Mh\le b n=1φ1(x)=y0+x0xf(ξ,y0)dξ[x0,x0+h]φ1(x)y0=x0xf(ξ,y0)dξx0xf(ξ,y0)dξMxx0Mhb
    • 设 当 n = k 时 成 立 , φ k ( x ) 连 续 且 ∣ φ k ( x ) − y 0 ∣ ≤ b 设当n=k时成立,\varphi_k(x)连续且|\varphi_k(x)-y_0|\le b n=kφk(x)φk(x)y0b
    • 当 n = k + 1 时 , φ k + 1 ( x ) = y 0 + ∫ x 0 x f ( ξ , φ k ( ξ ) ) d ξ 显 然 在 R 上 也 连 续 ∣ φ k ( x ) − y 0 ∣ = ∣ ∫ x 0 x f ( ξ , φ k ( ξ ) ) d ξ ∣ ≤ ∫ x 0 x ∣ f ( ξ , φ k ( ξ ) ) ∣ d ξ ≤ M ∣ x − x 0 ∣ ≤ M h ≤ b 当n=k+1时,\varphi_{k+1}(x)=y_0+\int^x_{x_0}f(\xi,\varphi_{k}(\xi))d\xi显然在R上也连续\\|\varphi_k(x)-y_0|=|\int^x_{x_0}f(\xi,\varphi_k(\xi))d\xi|\le \int^x_{x_0}|f(\xi,\varphi_k(\xi))|d\xi\le M|x-x_0|\le Mh\le b n=k+1φk+1(x)=y0+x0xf(ξ,φk(ξ))dξRφk(x)y0=x0xf(ξ,φk(ξ))dξx0xf(ξ,φk(ξ))dξMxx0Mhb
    • 得证
  • 命题3: 函 数 序 列 { φ n ( x ) } 在 [ x 0 , x 0 + h ] 上 一 致 收 敛 于 φ ( x ) 函数序列\{\varphi_n(x)\}在[x_0,x_0+h]上一致收敛于\varphi{(x)} {φn(x)}[x0,x0+h]φ(x)
    • 构造函数项级数: φ 0 ( x ) + ∑ n = 1 ∞ ( φ n ( x ) − φ n − 1 ( x ) ) , 其 前 n 项 部 分 和 即 为 φ ( n ) , 故 该 函 数 项 级 数 收 敛 ⇔ 原 函 数 列 收 敛 \varphi_0(x)+\sum^{\infty}_{n=1}(\varphi_{n}(x)-\varphi_{n-1}(x)),其前n项部分和即为\varphi(n),故该函数项级数收敛\Leftrightarrow原函数列收敛 φ0(x)+n=1(φn(x)φn1(x))nφ(n)
    • \TODO
  • 命题4: φ ( x ) 是 积 分 方 程 定 义 于 x 0 ≤ x ≤ x 0 + h 上 的 连 续 解 \varphi(x)是积分方程定义于x_0\le x\le x_0+h上的连续解 φ(x)x0xx0+h
  • 命题5: 在 [ x 0 , x 0 + h ] 上 积 分 方 程 的 解 φ ( x ) 是 惟 一 的 , 即 若 有 另 一 连 续 解 ψ ( x ) 则 ψ ( x ) = φ ( x ) 在[x_0,x_0+h]上积分方程的解\varphi(x)是惟一的,即若有另一连续解\psi(x)则\psi(x)=\varphi(x) [x0,x0+h]φ(x)ψ(x)ψ(x)=φ(x)
  • 近似计算与误差估计:
    • 求近似解: P i c a r d Picard Picard逐步逼近法 { φ 0 ( x ) = y 0 φ n ( x ) = y 0 + ∫ x 0 x f ( ξ , φ n − 1 ( ξ ) ) d ξ \begin{cases}\varphi_0(x)=y_0\\\varphi_n(x)=y_0+\int^x_{x_0}f(\xi,\varphi_{n-1}(\xi))d\xi\end{cases} {φ0(x)=y0φn(x)=y0+x0xf(ξ,φn1(ξ))dξ
    • 对 方 程 第 n 次 近 似 解 在 [ x 0 − h , x 0 + h ] 内 的 误 差 估 计 为 ∣ φ n ( x ) − φ ( x ) ∣ ≤ M L n ( n + 1 ) ! h n + 1 对方程第n次近似解在[x_0-h,x_0+h]内的误差估计为|\varphi_n(x)-\varphi(x)|\le\frac{ML^{n}}{(n+1)!}h^{n+1} n[x0h,x0+h]φn(x)φ(x)(n+1)!MLnhn+1

解的延拓

  • 根据解的存在唯一性定理,其解的存在唯一区间为 ∣ x − x 0 ∣ ≤ h |x-x_0|\le h xx0h h h h可能随 max ⁡ ( x , y ) ∈ R ∣ f ( x , y ) ∣ \underset{(x,y)\in R}{\max}|f(x,y)| (x,y)Rmaxf(x,y)增大而减小,即定义域的扩展可能会导致解的存在唯一空间减小。
  • 饱和解与饱和解区间
    • 定 义 在 G 上 的 微 分 方 程 d y d x = f ( x , y ) , y = φ ( x ) 是 方 程 定 义 在 ( α 1 , β 1 ) 上 的 连 续 解 定义在G上的微分方程\frac{dy}{dx}=f(x,y),y=\varphi(x)是方程定义在(\alpha_1,\beta_1)上的连续解 Gdxdy=f(x,y)y=φ(x)(α1,β1)
    • 若 存 在 另 一 解 y = ψ ( x ) , x ∈ ( α 2 , β 2 ) 并 满 足 ( α 2 , β 2 ) ⊃ ( α 1 , β 1 ) 且 当 x ∈ ( α 1 , β 1 ) 时 ψ ( x ) = φ ( x ) , 则 称 y = φ ( x ) , x ∈ ( α 1 , β 1 ) 可 延 拓 , y = ψ ( x ) 是 方 程 在 ( α 2 , β 2 ) 的 一 个 延 拓 若存在另一解y=\psi(x),x\in(\alpha_2,\beta_2)并满足(\alpha_2,\beta_2)\supset(\alpha_1,\beta_1)且当x\in(\alpha_1,\beta_1)时\psi(x)=\varphi(x),则称y=\varphi(x),x\in(\alpha_1,\beta_1)可延拓,y=\psi(x)是方程在(\alpha_2,\beta_2)的一个延拓 y=ψ(x)x(α2,β2)(α2,β2)(α1,β1)x(α1,β1)ψ(x)=φ(x)y=φ(x)x(α1,β1)y=ψ(x)(α2,β2)
    • 若 不 存 在 满 足 上 述 条 件 的 ψ ( x ) , 则 称 y = φ ( x ) , x ∈ ( α 1 , β 1 ) 是 原 方 程 的 饱 和 解 ( 不 可 延 拓 解 ) 若不存在满足上述条件的\psi(x),则称y=\varphi(x),x\in(\alpha_1,\beta_1)是原方程的饱和解(不可延拓解) ψ(x)y=φ(x)x(α1,β1)
    • 局 部 L i p s c h i t z 条 件 : 定 义 于 平 面 区 域 G 上 的 f ( x , y ) , 若 对 ∀ ( x 1 , x 2 ) ∈ G , ∃ 矩 形 R : { ( x , y ) ∣ ∣ x − x 0 ∣ ≤ a 1 , ∣ y − y 0 ∣ ≤ b 1 } ⊂ G 及 常 数 L 1 , 对 ∀ ( x , y ′ ) , ( x , y ′ ′ ) ∈ R 有 ∣ f ( x , y ′ ) − f ( x , y ′ ′ ) ∣ ≤ L 1 ∣ y ′ − y ′ ′ ∣ 局部Lipschitz条件:定义于平面区域G上的f(x,y),若对\forall(x_1,x_2)\in G,\exist矩形R:\{(x,y)\mid|x-x_0|\le a_1,|y-y_0|\le b_1\}\subset G及常数L_1,对\forall(x,y'),(x,y'')\in R 有\\|f(x,y')-f(x,y'')|\le L_1|y'-y''| LipschitzGf(x,y)(x1,x2)GR:{(x,y)xx0a1,yy0b1}GL1(x,y),(x,y)Rf(x,y)f(x,y)L1yy
      • f , f y 在 G 内 连 续 , 则 满 足 局 部 L i p s c h i t z 条 件 f,f_y在G内连续,则满足局部Lipschitz条件 f,fyGLipschitz
    • 解的延拓定理: f ( x , y ) 在 有 界 区 域 G 上 连 续 , 且 满 足 局 部 L i p s c h i t z 条 件 , 则 方 程 过 ∀ ( x 0 , y 0 ) ∈ G 的 解 y = φ ( x ) 可 延 拓 , 直 至 ( x , φ ( x ) ) 无 限 接 近 G 边 界 f(x,y)在有界区域G上连续,且满足局部Lipschitz条件,则方程过\forall(x_0,y_0)\in G的解y=\varphi(x)可延拓,直至(x,\varphi(x))无限接近G边界 f(x,y)GLipschitz(x0,y0)Gy=φ(x)(x,φ(x))G

解对初值的性质

  • 考虑初值时,可将解看作 y = φ ( x , x 0 , y 0 ) y=\varphi(x,x_0,y_0) y=φ(x,x0,y0)
  • 解关于初值的对称性: y = φ ( x , x 0 , y 0 ) ⇔ 解 存 在 唯 一 y 0 = φ ( x 0 , x , y ) y=\varphi(x,x_0,y_0)\xLeftrightarrow{解存在唯一}y_0=\varphi(x_0,x,y) y=φ(x,x0,y0) y0=φ(x0,x,y)
  • 解对初值的连续性:
    • 引理: f ( x , y ) 对 y 满 足 L i p s c h i t z 条 件 , 对 其 任 意 两 解 φ ( x ) , ψ ( x ) 在 公 共 区 间 上 , 有 ∣ φ ( x ) − ψ ( x ) ∣ ≤ ∣ φ ( x 0 ) − ψ ( x 0 ) ∣ e L ∣ x − x 0 ∣ f(x,y)对y满足Lipschitz条件,对其任意两解\varphi(x),\psi(x)在公共区间上,有|\varphi(x)-\psi(x)|\le|\varphi(x_0)-\psi(x_0)|e^{L|x-x_0|} f(x,y)yLipschitzφ(x),ψ(x)φ(x)ψ(x)φ(x0)ψ(x0)eLxx0
    • 解对初值的连续依赖: 初 值 问 题 在 [ a , b ] 有 解 y = φ ( x , x 0 , y 0 ) , 则 对 ∀ ε > 0 , ∃ δ = δ ( ε , a , b ) > 0 , 使 得 满 足 ( x 0 ‾ − x 0 ) 2 + ( y 0 ‾ − y 0 ) 2 < δ 2 的 一 切 ( x 0 ‾ , y 0 ‾ ) 有 解 φ ( x , x 0 ‾ , y 0 ‾ ) 满 足 初 值 y = φ ( x , x 0 ‾ , y 0 ‾ ) , 且 有 不 等 式 ∣ φ ( x , x 0 ‾ , y 0 ‾ ) − φ ( x , x 0 , y 0 ) ∣ < ε 初值问题在[a,b]有解y=\varphi(x,x_0,y_0),则对\forall \varepsilon\gt0,\exist\delta=\delta(\varepsilon,a,b)\gt0,使得满足(\overline{x_0}-x_0)^2+(\overline{y_0}-y_0)^2\lt\delta^2的一切(\overline{x_0},\overline{y_0})有解\varphi(x,\overline{x_0},\overline{y_0})满足初值y=\varphi(x,\overline{x_0},\overline{y_0}),且有不等式|\varphi(x,\overline{x_0},\overline{y_0})-\varphi(x,x_0,y_0)|\lt\varepsilon [a,b]y=φ(x,x0,y0)ε>0δ=δ(ε,a,b)>0使(x0x0)2+(y0y0)2<δ2(x0,y0)φ(x,x0,y0)y=φ(x,x0,y0)φ(x,x0,y0)φ(x,x0,y0)<ε
    • 解对初值的连续性定理: f ( x , y ) 在 区 域 内 连 续 则 其 解 函 数 y = φ ( x , x 0 , y 0 ) 在 它 的 存 在 范 围 内 连 续 f(x,y)在区域内连续则其解函数y=\varphi(x,x_0,y_0)在它的存在范围内连续 f(x,y)y=φ(x,x0,y0)
    • 解对初值和参数的连续依赖:\TODO
    • 解对初值和参数的连续性定理: f ( x , y , λ ) 在 区 域 内 连 续 则 其 解 函 数 y = φ ( x , x 0 , y 0 , λ ) 在 它 的 存 在 范 围 内 连 续 f(x,y,\lambda)在区域内连续则其解函数y=\varphi(x,x_0,y_0,\lambda)在它的存在范围内连续 f(x,y,λ)y=φ(x,x0,y0,λ)
  • 解对初值的可微性定理:
    • 解对初值可微: f ( x , y ) 及 ∂ f ∂ y 都 在 区 域 G 内 连 续 , 则 解 y = φ ( x , x 0 , y 0 ) 连 续 可 微 f(x,y)及\frac{\partial f}{\partial y}都在区域G内连续,则解y=\varphi(x,x_0,y_0)连续可微 f(x,y)yfGy=φ(x,x0,y0)

高阶微分方程

线性微分方程一般理论

  • 一般形式(要求各阶导数的次数为1):
    • 齐次: d n x d t n + a 1 ( t ) d n − 1 x d t n − 1 + ⋯ + a n ( t ) x = 0 \frac{d^nx}{dt^n}+a_1(t)\frac{d^{n-1}x}{dt^{n-1}}+\dots+a_n(t)x=0 dtndnx+a1(t)dtn1dn1x++an(t)x=0
    • 非齐次: d n x d t n + a 1 ( t ) d n − 1 x d t n − 1 + ⋯ + a n ( t ) x = f ( t ) \frac{d^nx}{dt^n}+a_1(t)\frac{d^{n-1}x}{dt^{n-1}}+\dots+a_n(t)x=f(t) dtndnx+a1(t)dtn1dn1x++an(t)x=f(t)
  • 解的存在唯一性定理(对于一组微分初值)
  • 齐次线性微分方程解的性质与结构
    • 叠加原理: 若 x 1 ( t ) , x 2 ( t ) , … , x k ( t ) 是 原 线 性 微 分 方 程 的 解 , 则 他 们 的 线 性 组 合 c 1 x 1 ( t ) + c 2 x 2 ( t ) + ⋯ + c k x k ( t ) 也 是 原 线 性 微 分 方 程 的 解 若x_1(t),x_2(t),\dots,x_k(t)是原线性微分方程的解,则他们的线性组合c_1x_1(t)+c_2x_2(t)+\dots+c_kx_k(t)也是原线性微分方程的解 x1(t),x2(t),,xk(t)线线c1x1(t)+c2x2(t)++ckxk(t)线
    • 线性相关: ∃ c 1 , c 2 , … , c n 不 全 为 0 , s . t . c 1 x 1 ( t ) + c 2 x 2 ( t ) + ⋯ + c n x n ( t ) ≡ 0 \exist c_1,c_2,\dots,c_n不全为0,s.t.\quad c_1x_1(t)+c_2x_2(t)+\dots+c_nx_n(t)\equiv0 c1,c2,,cn0s.t.c1x1(t)+c2x2(t)++cnxn(t)0
    • W r o n s k y Wronsky Wronsky行列式: W [ x 1 ( t ) , … , x k ( t ) ] = ∣ x 1 ( t ) ⋯ x k ( t ) ⋮ ⋱ ⋮ x 1 ( k − 1 ) ( t ) ⋯ x k ( k − 1 ) ( t ) ∣ [ a , b ] 上 线 性 相 关 ⇔ [ a , b ] 上 W ( t ) ≡ 0 [ a , b ] 上 线 性 无 关 ⇔ [ a , b ] 上 W ( t ) ≠ 0 W[x_1(t),\dots,x_k(t)]=\left|\begin{matrix}x_1(t) & \cdots & x_k(t)\\\vdots & \ddots & \vdots\\x_1^{(k-1)}(t) & \cdots & x_k^{(k-1)}(t)\end{matrix}\right| \\ [a,b]上线性相关\Leftrightarrow [a,b]上W(t)\equiv0 \\ [a,b]上线性无关\Leftrightarrow [a,b]上W(t)\ne0 W[x1(t),,xk(t)]=x1(t)x1(k1)(t)xk(t)xk(k1)(t)[a,b]线[a,b]W(t)0[a,b]线[a,b]W(t)=0
    • n阶齐次线性方程一定存在n个线性无关的解
    • 通解基本结构: x = c 1 x 1 ( t ) + c 2 x 2 ( t ) + ⋯ + c n x n ( t ) x=c_1x_1(t)+c_2x_2(t)+\dots+c_nx_n(t) x=c1x1(t)+c2x2(t)++cnxn(t) x 1 ( t ) , x 2 ( t ) , … , x n ( t ) x_1(t),x_2(t),\dots,x_n(t) x1(t),x2(t),,xn(t)为一组线性无关的解(基本解组)
    • W ( t ) = W ( t 0 ) e − ∫ t 0 t a 1 ( s ) d s W(t)=W(t_0)e^{-\int^{t}_{t_0}a_1(s)ds} W(t)=W(t0)et0ta1(s)ds
  • 非齐次线性微分方程解与常数变易法
    • 解的和、差亦为原方程解
    • 通解基本结构: x = c 1 x 1 ( t ) + c 2 x 2 ( t ) + ⋯ + c n x n ( t ) + x ~ ( t ) , x 1 ( t ) , x 2 ( t ) , … , x n ( t ) 为 一 组 线 性 无 关 的 解 ( 左 侧 齐 次 部 分 ) , x ~ ( t ) 为 该 非 齐 次 线 性 微 分 方 程 的 一 个 解 x=c_1x_1(t)+c_2x_2(t)+\dots+c_nx_n(t)+\widetilde{x}(t),x_1(t),x_2(t),\dots,x_n(t)为一组线性无关的解(左侧齐次部分),\widetilde{x}(t)为该非齐次线性微分方程的一个解 x=c1x1(t)+c2x2(t)++cnxn(t)+x (t)x1(t),x2(t),,xn(t)线x (t)线
    • 常数变易法:
      • c i ⇒ c i ( t ) c_i\Rightarrow c_i(t) cici(t)
      • 对原微分方程求n-1阶导数,并代入原方程,得到线性方程组: { c 1 ′ ( t ) x 1 ( t ) + ⋯ + c n ′ ( t ) x n ( t ) = 0 c 1 ′ ( t ) x 1 ′ ( t ) + ⋯ + c n ′ ( t ) x n ′ ( t ) = 0 … c 1 ′ ( t ) x 1 ( n − 1 ) ( t ) + ⋯ + c n ′ ( t ) x n ( n − 1 ) ( t ) = 0 \\\begin{cases}c_1'(t)x_1(t)+\dots+c_n'(t)x_n(t)=0\\c_1'(t)x_1'(t)+\dots+c_n'(t)x_n'(t)=0\\\dots\\c_1'(t)x_1^{(n-1)}(t)+\dots+c_n'(t)x_n^{(n-1)}(t)=0\end{cases} c1(t)x1(t)++cn(t)xn(t)=0c1(t)x1(t)++cn(t)xn(t)=0c1(t)x1(n1)(t)++cn(t)xn(n1)(t)=0
      • 解线性方程组,得到 c i ′ ( t ) = φ i ( t ) ⇒ 积 分 c i ( t ) = ∫ φ i ( t ) d t + γ i c_i'(t)=\varphi_i(t)\xRightarrow{积分}c_i(t)=\int\varphi_i(t)dt+\gamma_i ci(t)=φi(t) ci(t)=φi(t)dt+γi
      • φ i ( t ) = f ( t ) ψ i ( t ) W ( t ) , ψ i ( t ) 为 W ( t ) 中 x i ( n − 1 ) \varphi_i(t)=\frac{f(t)\psi_i(t)}{W(t)},\psi_i(t)为W(t)中x_i^{(n-1)} φi(t)=W(t)f(t)ψi(t),ψi(t)W(t)xi(n1)的代数余子式,可据此快速求得(如果矩阵小的话)
      • 得到通解: x ( t ) = ∑ i = 1 n x i ( t ) γ i ( t ) + ∑ i = 1 n x i ( t ) ∫ φ i ( t ) d t x(t)=\sum^{n}_{i=1}x_i(t)\gamma_i(t)+\sum^{n}_{i=1}x_i(t)\int\varphi_i(t)dt x(t)=i=1nxi(t)γi(t)+i=1nxi(t)φi(t)dt
      • 若要得到特解,即给出 γ i \gamma_i γi的值

常系数线性微分方程的解法

  • 复值函数: z ( t ) = φ ( t ) + i ψ ( t ) ⇒ z ′ ( t ) = φ ′ ( t ) + i ψ ′ ( t ) z(t)=\varphi(t)+i\psi(t)\Rightarrow z'(t)=\varphi'(t)+i\psi'(t) z(t)=φ(t)+iψ(t)z(t)=φ(t)+iψ(t)
  • 复值指数函数:
    • z ( t ) = e k t = e ( a + i β ) t = e a t ( cos ⁡ β t + i sin ⁡ β t ) z(t)=e^{kt}=e^{(a+i\beta)t}=e^{at}(\cos\beta t+i\sin\beta t) z(t)=ekt=e(a+iβ)t=eat(cosβt+isinβt)
    • 欧拉公式: { cos ⁡ β t = ( e i β t + e − i β t ) / 2 sin ⁡ β t = ( e i β t − e − i β t ) / 2 i \begin{cases} \cos\beta t=(e^{i\beta t}+e^{-i\beta t})/2\\\sin\beta t=(e^{i\beta t}-e^{-i\beta t})/2i\end{cases} {cosβt=(eiβt+eiβt)/2sinβt=(eiβteiβt)/2i
  • 复值解: d n z ( t ) d t n + a 1 ( t ) d n − 1 z ( t ) d t n − 1 + ⋯ + a n ( t ) z ( t ) = f ( t ) \frac{d^nz(t)}{dt^n}+a_1(t)\frac{d^{n-1}z(t)}{dt^{n-1}}+\dots+a_n(t)z(t)=f(t) dtndnz(t)+a1(t)dtn1dn1z(t)++an(t)z(t)=f(t) z ( t ) z(t) z(t)为定义在 [ a , b ] [a,b] [a,b]上以t为实变量的复值函数
    • f ( t ) = 0 f(t)=0 f(t)=0(齐次), a i ( t ) a_i(t) ai(t)均为实值函数,则复值函数的实部、虚部、共轭复数也均是原微分方程的解
    • f ( t ) = u ( t ) + i v ( t ) f(t)=u(t)+iv(t) f(t)=u(t)+iv(t) a i ( t ) a_i(t) ai(t)均为实值函数,则复值函数的
      • 实部 U ( t ) U(t) U(t) d n x d t n + a 1 ( t ) d n − 1 x d t n − 1 + ⋯ + a n ( t ) x = u ( t ) \frac{d^nx}{dt^n}+a_1(t)\frac{d^{n-1}x}{dt^{n-1}}+\dots+a_n(t)x=u(t) dtndnx+a1(t)dtn1dn1x++an(t)x=u(t)
      • 虚部 V ( t ) V(t) V(t) d n x d t n + a 1 ( t ) d n − 1 x d t n − 1 + ⋯ + a n ( t ) x = v ( t ) \frac{d^nx}{dt^n}+a_1(t)\frac{d^{n-1}x}{dt^{n-1}}+\dots+a_n(t)x=v(t) dtndnx+a1(t)dtn1dn1x++an(t)x=v(t)
  • 常系数线性方程求解
    • L [ x ] = d n x d t n + a 1 d n − 1 x d t n − 1 + ⋯ + a n x = 0 L[x]=\frac{d^nx}{dt^n}+a_1\frac{d^{n-1}x}{dt^{n-1}}+\dots+a_nx=0 L[x]=dtndnx+a1dtn1dn1x++anx=0
    • x = e λ t ⇔ F ( λ ) = λ n + a 1 λ n − 1 + ⋯ + a n − 1 λ + a n = 0 F ( λ ) 为 特 征 方 程 , λ 为 特 征 根 x=e^{\lambda t}\Leftrightarrow F(\lambda)=\lambda^n+a_1\lambda^{n-1}+\dots+a_{n-1}\lambda+a_n=0\\F(\lambda)为特征方程,\lambda为特征根 x=eλtF(λ)=λn+a1λn1++an1λ+an=0F(λ)λ
    • 解出方程的 n n n个解(包括重根) λ 1 , λ 2 , … , λ k , λ k + 1 , k + 2.. k + m 1 ( m 1 重 根 ) … \lambda_1,\lambda_2,\dots,\lambda_k,\lambda_{k+1,k+2..k+m_1}(m_1重根)\dots λ1,λ2,,λk,λk+1,k+2..k+m1(m1)
    • 基本解组: e λ 1 t , e λ 2 t , … , e λ k + 1 t , t e λ k + 2 t , … , t m 1 − 1 e λ k + m 1 t … e^{\lambda_1t},e^{\lambda_2t},\dots,e^{\lambda_{k+1}t},te^{\lambda_{k+2}t},\dots,t^{m_1-1}e^{\lambda_{k+m_1}t}\dots eλ1t,eλ2t,,eλk+1t,teλk+2t,,tm11eλk+m1t
    • 构成通解: x = c 1 e λ 1 t + c 2 e λ 2 t + ⋯ + c k + 1 e λ k + 1 t + c k + 2 t e λ k + 2 t + ⋯ + c k + m 1 t m 1 − 1 e λ k + m 1 t + … x=c_1e^{\lambda_1t}+c_2e^{\lambda_2t}+\dots+c_{k+1}e^{\lambda_{k+1}t}+c_{k+2}te^{\lambda_{k+2}t}+\dots+c_{k+m_1}t^{m_1-1}e^{\lambda_{k+m_1}t}+\dots x=c1eλ1t+c2eλ2t++ck+1eλk+1t+ck+2teλk+2t++ck+m1tm11eλk+m1t+
  • 欧拉方程求解
    • x n d n y d x n + a 1 x n − 1 d n − 1 y d x n − 1 + ⋯ + a n y = 0 x^n\frac{d^ny}{dx^n}+a_1x^{n-1}\frac{d^{n-1}y}{dx^{n-1}}+\dots+a_ny=0 xndxndny+a1xn1dxn1dn1y++any=0
    • ⇒ y = x k k ( k − 1 ) … ( k − n ) + a 1 k ( k − 1 ) … ( k − n + 1 ) + ⋯ + a n − 1 k + a n = 0 \xRightarrow{y=x^k}k(k-1)\dots (k-n)+a_1k(k-1)\dots (k-n+1)+\dots+a_{n-1}k+a_n=0 y=xk k(k1)(kn)+a1k(k1)(kn+1)++an1k+an=0
    • 解出 n n n个解(包括重根) k 1 , k 2 , … , k m + 1 , m + 2 , … , m + s 1 ( s 1 重 根 ) , … k_1,k_2,\dots,k_{m+1,m+2,\dots,m+s_1}(s_1重根),\dots k1,k2,,km+1,m+2,,m+s1(s1),
    • 基本解组: x k 1 , x k 2 , … , x k m + 1 , x k m + 2 ln ⁡ ∣ x ∣ , … , x k m + s 1 ln ⁡ m 1 − 1 ∣ x ∣ … x^{k_1},x^{k_2},\dots,x^{k_{m+1}},x^{k_{m+2}}\ln{|x|},\dots,x^{k_{m+s_1}}\ln^{m_1-1}{|x|}\dots xk1,xk2,,xkm+1,xkm+2lnx,,xkm+s1lnm11x
    • 构成通解: y = c 1 x k 1 , c 2 x k 2 , … , c m + 1 x k m + 1 + c m + 2 x k m + 2 ln ⁡ ∣ x ∣ + ⋯ + c m + s 1 x k m + s 1 ln ⁡ m 1 − 1 ∣ x ∣ … y=c_1x^{k_1},c_2x^{k_2},\dots,c_{m+1}x^{k_{m+1}}+c_{m+2}x^{k_{m+2}}\ln{|x|}+\dots+c_{m+s_1}x^{k_{m+s_1}}\ln^{m_1-1}{|x|}\dots y=c1xk1,c2xk2,,cm+1xkm+1+cm+2xkm+2lnx++cm+s1xkm+s1lnm11x
  • 常系数非齐次线性微分方程求解
    • L [ x ] = d n x d t n + a 1 d n − 1 x d t n − 1 + ⋯ + a n x = f ( t ) L[x]=\frac{d^nx}{dt^n}+a_1\frac{d^{n-1}x}{dt^{n-1}}+\dots+a_nx=f(t) L[x]=dtndnx+a1dtn1dn1x++anx=f(t)
    • 比较系数法:
      • f ( t ) ≡ ( b 0 t m + b 1 t m − 1 + ⋯ + b m ) e λ 0 t f(t)\equiv(b_0t^m+b_1t^{m-1}+\dots+b_m)e^{\lambda_0t} f(t)(b0tm+b1tm1++bm)eλ0t
      • 基本解组: e λ 1 t , e λ 2 t , … , e λ k + 1 t , t e λ k + 2 t , … , t m 1 − 1 e λ k + m 1 t … e^{\lambda_1t},e^{\lambda_2t},\dots,e^{\lambda_{k+1}t},te^{\lambda_{k+2}t},\dots,t^{m_1-1}e^{\lambda_{k+m_1}t}\dots eλ1t,eλ2t,,eλk+1t,teλk+2t,,tm11eλk+m1t
      • 设方程有形式解: t k ( B 0 t m + B 1 t m − 1 + ⋯ + B m ) e λ 0 t ( k 是 λ 0 作 为 方 程 根 时 的 重 数 , 非 根 即 为 0 ) t^k(B_0t^m+B_1t^{m-1}+\dots+B_m)e^{\lambda_0t}\quad(k是\lambda_0作为方程根时的重数,非根即为0) tk(B0tm+B1tm1++Bm)eλ0t(kλ00)
      • 代入原方程,比较同次幂系数,解出未知系数 b i b_i bi
      • 构成通解: x = c 1 e λ 1 t + c 2 e λ 2 t + ⋯ + c k + 1 e λ k + 1 t + c k + 2 t e λ k + 2 t + ⋯ + c k + m 1 t m 1 − 1 e λ k + m 1 t + ⋯ + x ~ ( t ) x=c_1e^{\lambda_1t}+c_2e^{\lambda_2t}+\dots+c_{k+1}e^{\lambda_{k+1}t}+c_{k+2}te^{\lambda_{k+2}t}+\dots+c_{k+m_1}t^{m_1-1}e^{\lambda_{k+m_1}t}+\dots+\widetilde{x}(t) x=c1eλ1t+c2eλ2t++ck+1eλk+1t+ck+2teλk+2t++ck+m1tm11eλk+m1t++x (t)
    • 欧拉变换:
      • f ( t ) ≡ ( A ( t ) c o s β t + B ( t ) s i n β t ) e α t f(t)\equiv(A(t)cos\beta t+B(t)sin\beta t)e^{\alpha t} f(t)(A(t)cosβt+B(t)sinβt)eαt
      • 基本解组: e λ 1 t , e λ 2 t , … , e λ k + 1 t , t e λ k + 2 t , … , t m 1 − 1 e λ k + m 1 t … e^{\lambda_1t},e^{\lambda_2t},\dots,e^{\lambda_{k+1}t},te^{\lambda_{k+2}t},\dots,t^{m_1-1}e^{\lambda_{k+m_1}t}\dots eλ1t,eλ2t,,eλk+1t,teλk+2t,,tm11eλk+m1t
      • x ~ ( t ) = t k ( P ( t ) c o s β t + Q ( t ) s i n β t ) e α t ( k 为 α + i β 作 为 方 程 特 征 根 的 重 数 ) \widetilde{x}(t)=t^k(P(t)cos\beta t+Q(t)sin\beta t)e^{\alpha t}\quad (k为\alpha +i\beta作为方程特征根的重数) x (t)=tk(P(t)cosβt+Q(t)sinβt)eαt(kα+iβ)
      • 代入原方程,比较等式两侧 cos ⁡ t \cos{t} cost sin ⁡ t \sin{t} sint的系数解出 P ( t ) 、 Q ( t ) , P ( t ) 、 Q ( t ) 次 数 与 A ( t ) 、 B ( t ) 次 数 最 大 值 相 同 P(t)、Q(t),P(t)、Q(t)次数与A(t)、B(t)次数最大值相同 P(t)Q(t)P(t)Q(t)A(t)B(t)
      • 构成通解: x = c 1 e λ 1 t + c 2 e λ 2 t + ⋯ + c k + 1 e λ k + 1 t + c k + 2 t e λ k + 2 t + ⋯ + c k + m 1 t m 1 − 1 e λ k + m 1 t + ⋯ + x ~ ( t ) x=c_1e^{\lambda_1t}+c_2e^{\lambda_2t}+\dots+c_{k+1}e^{\lambda_{k+1}t}+c_{k+2}te^{\lambda_{k+2}t}+\dots+c_{k+m_1}t^{m_1-1}e^{\lambda_{k+m_1}t}+\dots+\widetilde{x}(t) x=c1eλ1t+c2eλ2t++ck+1eλk+1t+ck+2teλk+2t++ck+m1tm11eλk+m1t++x (t)
      • 当仅含 sin ⁡ \sin sin cos ⁡ \cos cos项时,将其扩展为 cos ⁡ β t + i sin ⁡ β t \cos{\beta t}+i\sin{\beta t} cosβt+isinβt的形式,即 f ( t ) = A ( t ) e α + i β t f(t)=A(t)e^{\alpha+i\beta t} f(t)=A(t)eα+iβt之后参照比较系数法求解,然后取实/虚部作为特解。
    • 拉普拉斯变换法:
      • 拉普拉斯变换: L [ f ( t ) ] ≡ F ( s ) = ∫ 0 ∞ e − s t f ( t ) d t L[f(t)]\equiv F(s)=\int_0^\infty e^{-st}f(t)dt L[f(t)]F(s)=0estf(t)dt
      • 性质:
        • L [ f ( n ) ( t ) ] = s n L [ f ( t ) ] − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) L[f^{(n)}(t)]=s^nL[f(t)]-s^{n-1}f(0)-s^{n-2}f'(0)-\dots-f^{(n-1)}(0) L[f(n)(t)]=snL[f(t)]sn1f(0)sn2f(0)f(n1)(0)
        • d n F ( s ) d s n = ( − 1 ) n L [ t n f ( t ) ] \frac{d^nF(s)}{ds^n}=(-1)^nL[t^nf(t)] dsndnF(s)=(1)nL[tnf(t)]
        • L [ e a t f ( t ) ] = F ( s − a ) L[e^{at}f(t)]=F(s-a) L[eatf(t)]=F(sa)
        • L [ a f ( t ) + b g ( t ) ] = a L [ f ( t ) ] + b L [ g ( t ) ] L[af(t)+bg(t)]=aL[f(t)]+bL[g(t)] L[af(t)+bg(t)]=aL[f(t)]+bL[g(t)]
      • d n x d t n + a 1 d n − 1 x d t n − 1 + ⋯ + a n x = f ( t ) x ( 0 ) = x 0 , … , x ( n − 1 ) ( 0 ) \frac{d^nx}{dt^n}+a_1\frac{d^{n-1}x}{dt^{n-1}}+\dots+a_nx=f(t) \\ x(0)=x_0,\dots,x^{(n-1)}(0) dtndnx+a1dtn1dn1x++anx=f(t)x(0)=x0,,x(n1)(0)

降阶与幂级数解法

  • 可降阶类型
    • 不显含 x x x及直到 k − 1 k-1 k1阶导数:
      • F ( t , x ( k ) , … , x ( n ) ) = 0 ⇒ y = x ( k ) F ( t , y , y ′ , … , y ( n − k ) ) = 0 F(t,x^{(k)},\dots,x^{(n)})=0\xRightarrow{y=x^{(k)}}F(t,y,y',\dots,y^{(n-k)})=0 F(t,x(k),,x(n))=0y=x(k) F(t,y,y,,y(nk))=0
      • 求通解 y = φ ( t , c 1 , c 2 , … , c n − k ) y=\varphi(t,c_1,c_2,\dots,c_{n-k}) y=φ(t,c1,c2,,cnk)
      • y = φ ( t , c 1 , c 2 , … , c n − k ) y=\varphi(t,c_1,c_2,\dots,c_{n-k}) y=φ(t,c1,c2,,cnk)积分n次,得到 x = ψ ( t , c 1 , c 2 , … , c n ) x=\psi(t,c_1,c_2,\dots,c_n) x=ψ(t,c1,c2,,cn)
    • 不显含 t t t
      • F ( x , x ′ , … , x ( n ) ) = 0 ⇒ y = x ′ G ( x , y , … , y ( n − 1 ) ) F(x,x',\dots,x^{(n)})=0\xRightarrow{y=x'}G(x,y,\dots,y^{(n-1)}) F(x,x,,x(n))=0y=x G(x,y,,y(n1))
      • 求通解 φ ( t , c 1 , c 2 , … , c n − 1 ) \varphi(t,c_1,c_2,\dots,c_{n-1}) φ(t,c1,c2,,cn1)
      • 解方程 d x x t = φ ( t , c 1 , c 2 , … , c n − 1 ) \frac{dx}{xt}=\varphi(t,c_1,c_2,\dots,c_{n-1}) xtdx=φ(t,c1,c2,,cn1)
    • 已知非零特解
      • d 2 x d t 2 + p ( t ) d x d t + q ( t ) = 0 \frac{d^2x}{dt^2}+p(t)\frac{dx}{dt}+q(t)=0 dt2d2x+p(t)dtdx+q(t)=0
      • ⇒ x = x 1 y , z = y ′ x = x 1 ( c 1 + c 2 ∫ 1 x 1 2 e − ∫ p ( t ) d t d t ) \xRightarrow{x=x_1y,z=y'}x=x_1(c_1+c_2\int \frac{1}{x_1^2}e^{-\int p(t)dt}dt) x=x1y,z=y x=x1(c1+c2x121ep(t)dtdt)
  • 幂级数解法
    • d 2 y d x 2 + p ( x ) d y d x + q ( x ) = 0 \frac{d^2y}{dx^2}+p(x)\frac{dy}{dx}+q(x)=0 dx2d2y+p(x)dxdy+q(x)=0
    • p ( x ) , q ( x ) p(x),q(x) p(x),q(x)可以展成 x x x的幂级数,以 ∣ x ∣ < R |x|<R x<R为收敛区间
      • 则原微分方程有形若 y = ∑ n = 0 ∞ a n x n y=\sum^{\infty}_{n=0}a_nx^n y=n=0anxn的解
      • 求级数形式解的各阶导数,代入原方程
      • 依据初始条件、各项系数为0,得到通解(若为已知函数的级数则可合并)
    • x p ( x ) , x 2 q ( x ) xp(x),x^2q(x) xp(x),x2q(x)可以展成 x x x的幂级数,且以 ∣ x ∣ < R |x|<R x<R为收敛区间
      • 则原微分方程有形若 y = x α ∑ n = 0 ∞ a n x n y=x^\alpha \sum^{\infty}_{n=0}a_nx^n y=xαn=0anxn的解

线性微分方程组

线性微分方程组

  • 一阶线性微分方程组 { x 1 ′ = a 11 ( t ) x 1 + a 12 ( t ) x 2 + ⋯ + a 1 n x n + f 1 ( t ) x 2 ′ = a 21 ( t ) x 1 + a 22 ( t ) x 2 + ⋯ + a 2 n x n + f 2 ( t ) … x n ′ = a n 1 ( t ) x 1 + a n 2 ( t ) x 2 + ⋯ + a n n x n + f n ( t ) \begin{cases}x_1'=a_{11}(t)x_1+a_{12}(t)x_2+\dots+a_{1n}x_n+f_1(t)\\x_2'=a_{21}(t)x_1+a_{22}(t)x_2+\dots+a_{2n}x_n+f_2(t)\\\dots\\x_n'=a_{n1}(t)x_1+a_{n2}(t)x_2+\dots+a_{nn}x_n+f_n(t)\end{cases} x1=a11(t)x1+a12(t)x2++a1nxn+f1(t)x2=a21(t)x1+a22(t)x2++a2nxn+f2(t)xn=an1(t)x1+an2(t)x2++annxn+fn(t)
    • 解:函数组 x 1 ( t ) , x 2 ( t ) , … , x n ( t ) x_1(t),x_2(t),\dots,x_n(t) x1(t),x2(t),,xn(t)
    • 通解:函数组 x i ( t ) = φ i ( t , c 1 , c 2 , … , c n ) , i = 1 , 2 , … , n x_i(t)=\varphi_i(t,c_1,c_2,\dots,c_n),i=1,2,\dots,n xi(t)=φi(t,c1,c2,,cn)i=1,2,,n
    • 向量矩阵表示:
      • x ⇀ ( t ) = ( x 1 ( t ) x 2 ( t ) ⋮ x n ( t ) ) A ( t ) = ( a 11 ( t ) ⋯ a 1 n ( t ) ⋮ ⋱ ⋮ a n 1 ( t ) ⋯ a n n ( t ) ) \overrightharpoon{x}(t)=\left(\begin{matrix}x_1(t)\\x_2(t)\\\vdots\\x_n(t)\end{matrix}\right) \quad A(t)=\left(\begin{matrix}a_{11}(t)&\cdots&a_{1n}(t)\\\vdots&\ddots&\vdots\\a_{n1}(t)&\cdots&a_{nn}(t)\end{matrix}\right) x (t)=x1(t)x2(t)xn(t)A(t)=a11(t)an1(t)a1n(t)ann(t)
      • 微分/积分:对每一个元素进行微分/积分
      • d x d t = A ( t ) x ⇀ + f ( t ) \frac{dx}{dt}=A(t)\overrightharpoon{x}+f(t) dtdx=A(t)x +f(t)
      • u ⇀ ( t ) 为 解 向 量 , u ⇀ ′ ( t ) = A ( t ) u ⇀ ( t ) + f ( t ) \overrightharpoon{u}(t)为解向量,\overrightharpoon{u}'(t)=A(t)\overrightharpoon{u}(t)+f(t) u (t)u (t)=A(t)u (t)+f(t)
      • x ⇀ ( t 0 ) = η ⇀ 为 初 值 , u ⇀ ( t 0 ) = η ⇀ \overrightharpoon{x}(t_0)=\overrightharpoon{\eta}为初值,\overrightharpoon{u}(t_0)=\overrightharpoon{\eta} x (t0)=η u (t0)=η
    • n阶线性微分方程初值问题 ⇒ \Rightarrow 一阶线性微分方程组初值问题(反之不一定能化)
      • { d n x d t n + a 1 ( t ) d n − 1 x d t n − 1 + ⋯ + a n ( t ) x = f ( t ) x ( t 0 ) = η 1 , x ′ ( t 0 ) = η 2 , … , x ( n ) ( t 0 ) = η n \begin{cases}\frac{d^nx}{dt^n}+a_1(t)\frac{d^{n-1}x}{dt^{n-1}}+\dots+a_n(t)x=f(t)\\x(t_0)=\eta_1,x'(t_0)=\eta_2,\dots,x^{(n)}(t_0)=\eta_n\end{cases} {dtndnx+a1(t)dtn1dn1x++an(t)x=f(t)x(t0)=η1,x(t0)=η2,,x(n)(t0)=ηn
      • x ⇀ ( t ) = ( x ( t ) x ′ ( t ) ⋮ x ( n − 1 ) ( t ) ) { x ⇀ ′ ( t ) = ( 0 1 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ 1 − a n ( t ) − a n − 1 ( t ) − a n − 2 ( t ) ⋯ − a 1 ( t ) ) x ⇀ ( t ) + ( 0 ⋮ 0 f ( t ) ) x ⇀ ( t 0 ) = η ⇀ = ( η 1 η 2 ⋮ η n ) \overrightharpoon{x}(t)=\left(\begin{matrix}x(t)\\x'(t)\\\vdots\\x^{(n-1)}(t)\end{matrix}\right)\\\begin{cases}\overrightharpoon{x}'(t)=\left(\begin{matrix}0&1&0&\cdots&0\\\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&\cdots&1\\-a_n(t)&-a_{n-1}(t)&-a_{n-2}(t)&\cdots&-a_1(t)\end{matrix}\right)\overrightharpoon{x}(t)+\left(\begin{matrix}0\\\vdots\\0\\f(t)\end{matrix}\right)\\\overrightharpoon{x}(t_0)=\overrightharpoon{\eta}=\left(\begin{matrix}\eta_1\\\eta_2\\\vdots\\\eta_n\end{matrix}\right)\end{cases} x (t)=x(t)x(t)x(n1)(t)x (t)=00an(t)10an1(t)00an2(t)01a1(t)x (t)+00f(t)x (t0)=η =η1η2ηn
  • 存在唯一定理
    • A n × n ( t ) , f ⇀ ( t ) , η ⇀ , ∀ t 0 ∈ [ a , b ] A_{n\times n}(t),\overrightharpoon{f}(t),\overrightharpoon{\eta},\forall t_0\in [a,b] An×n(t),f (t),η ,t0[a,b] 初值问题 { x ⇀ ′ = A ( t ) x ⇀ + f ⇀ ( t ) x ⇀ ( t 0 ) = η ⇀ 在 [ a , b ] 上 有 唯 一 解 x ⇀ = φ ⇀ ( t ) \begin{cases}\overrightharpoon{x}'=A(t)\overrightharpoon{x}+\overrightharpoon{f}(t)\\\overrightharpoon{x}(t_0)=\overrightharpoon{\eta}\end{cases}在[a,b]上有唯一解\overrightharpoon{x}=\overrightharpoon{\varphi}(t) {x =A(t)x +f (t)x (t0)=η [a,b]x =φ (t)
    • 矩阵向量范数: ∣ ∣ x ⇀ ∣ ∣ = ∑ i = 1 n ∣ x i ∣ ∣ ∣ A n × n ∣ ∣ = ∑ i , j = 1 n ∣ a i j ∣ ||\overrightharpoon{x}||=\sum_{i=1}^n|x_i|\quad ||A_{n\times n}||=\sum_{i,j=1}^{n}|a_{ij}| x =i=1nxiAn×n=i,j=1naij
    • 敛散性:
      • 向量序列 { x k ( t ) } \{x_k(t)\} {xk(t)}收敛 ⇔ \Leftrightarrow 每一个 x k ( t ) x_k(t) xk(t)收敛
      • 向量函数序列级数 ∑ k = 1 ∞ x k ( t ) \sum^{\infty}_{k=1}x_k(t) k=1xk(t)一致收敛 ⇔ ∣ ∣ x k ( t ) ∣ ∣ ≤ M k , ∑ k = 1 ∞ M k 在 [ a , b ] 一 致 收 敛 ⇒ lim ⁡ k → ∞ ∫ a b x k ( t ) d t = ∫ a b lim ⁡ k → ∞ x k ( t ) d t \\\Leftrightarrow||x_k(t)||\le M_k,\sum^{\infty}_{k=1}M_k在[a,b]一致收敛\\\Rightarrow\underset{k\rightarrow\infty}{\lim}\int_{a}^{b}x_k(t)dt=\int_{a}^{b}\underset{k\rightarrow\infty}{\lim}x_k(t)dt xk(t)Mk,k=1Mk[a,b]klimabxk(t)dt=abklimxk(t)dt
      • 矩阵序列级数 ∑ k = 1 ∞ A k \sum^{\infty}_{k=1}A_k k=1Ak收敛 ⇔ ∑ k = 1 ∞ a i j ( k ) \Leftrightarrow\sum^{\infty}_{k=1}a_{ij}^{(k)} k=1aij(k)收敛
    • 存在唯一定理
      • a i ( t ) ( i = 1 , 2 , … , n ) 与 f ( t ) a_i(t)(i=1,2,\dots,n)与f(t) ai(t)(i=1,2,,n)f(t)均为区间 [ a , b ] [a,b] [a,b]上的连续函数,则对任意 t 0 ∈ [ a , b ] t_0\in[a,b] t0[a,b]及任意 η 1 , η 2 , … , η n \eta_1,\eta_2,\dots,\eta_n η1,η2,,ηn方程 x ( n ) + a 1 ( t ) x ( n − 1 ) + ⋯ + a n ( t ) x = f ( t ) x^{(n)}+a_1(t)x^{(n-1)}+\dots+a_n(t)x=f(t) x(n)+a1(t)x(n1)++an(t)x=f(t)在区间 [ a , b ] [a,b] [a,b]上存在唯一解 x = ω ( t ) x=\omega(t) x=ω(t)且满足初值条件 ω ( t 0 ) = η 1 , ω ′ ( t 0 ) = η 2 , … , ω ( n − 1 ) ( t 0 ) = η n \omega(t_0)=\eta_1,\omega'(t_0)=\eta_2,\dots,\omega^{(n-1)}(t_0)=\eta_n ω(t0)=η1,ω(t0)=η2,,ω(n1)(t0)=ηn
      • { x ⇀ ′ = A ( t ) x ⇀ + f ⇀ ( t ) x ⇀ ( t 0 ) = η ⇀ \begin{cases}\overrightharpoon{x}'=A(t)\overrightharpoon{x}+\overrightharpoon{f}(t)\\\overrightharpoon{x}(t_0)=\overrightharpoon{\eta}\end{cases} {x =A(t)x +f (t)x (t0)=η
      • 第一步:命题1:原方程组在 [ a , b ] [a,b] [a,b]上的解 φ ⇀ ( t ) \overrightharpoon{\varphi}(t) φ (t)等价于 x ⇀ ( t ) = η ⇀ + ∫ t 0 t ( A ( s ) x ⇀ ( s ) + f ⇀ ) 在 [ a , b ] 上 的 连 续 解 \overrightharpoon{x}(t)=\overrightharpoon{\eta}+\int^{t}_{t_0}(A(s)\overrightharpoon{x}(s)+\overrightharpoon{f})在[a,b]上的连续解 x (t)=η +t0t(A(s)x (s)+f )[a,b]
      • 第二步:命题2:构造 P i c a r d Picard Picard逐步逼近向量函数序列 { φ k ( t ) } { φ 0 ⇀ ( t ) = η ⇀ φ k ⇀ ( t ) = η ⇀ + ∫ t 0 t ( A ( s ) φ k − 1 ⇀ ( s ) + f ⇀ ( s ) ) d s \{\varphi_k(t)\}\\\begin{cases}\overrightharpoon{\varphi_0}(t)=\overrightharpoon{\eta}\\\overrightharpoon{\varphi_k}(t)=\overrightharpoon{\eta}+\int^t_{t_0}(A(s)\overrightharpoon{\varphi_{k-1}}(s)+\overrightharpoon{f}(s))ds\end{cases} {φk(t)}{φ0 (t)=η φk (t)=η +t0t(A(s)φk1 (s)+f (s))ds
      • 第三步:命题3:向量函数序列 { φ k ( t ) } \{\varphi_k(t)\} {φk(t)}在区间 [ a , b ] [a,b] [a,b]上一致收敛收敛
      • 第四步:命题4: lim ⁡ k → ∞ φ k ⇀ ( t ) = φ ⇀ ( t ) \underset{k\rightarrow\infty}{\lim}\overrightharpoon{\varphi_k}(t)=\overrightharpoon{\varphi}(t) klimφk (t)=φ (t)是原积分方程定义在区间 [ a , b ] [a,b] [a,b]上的连续解
      • 第五步:命题5:设 ψ ⇀ ( t ) \overrightharpoon{\psi}(t) ψ (t)是积分方程定义在区间 [ a , b ] [a,b] [a,b]上的另一个连续解,则有 φ ⇀ ( t ) ≡ ψ ⇀ ( t ) \overrightharpoon{\varphi}(t)\equiv\overrightharpoon{\psi}(t) φ (t)ψ (t)

线性微分方程组一般理论

  • 一阶齐次
    • x ⇀ ′ = A ( t ) x ⇀ \overrightharpoon{x}'=A(t)\overrightharpoon{x} x =A(t)x
    • 叠加原理: x ⇀ 1 ( t ) , x ⇀ 2 ( t ) , … , x ⇀ m ( t ) \overrightharpoon{x}_1(t),\overrightharpoon{x}_2(t),\dots,\overrightharpoon{x}_m(t) x 1(t),x 2(t),,x m(t)为原微分方程的 m m m个解,则他们的线性组合 c 1 x ⇀ 1 ( t ) + c 2 x ⇀ 2 ( t ) + ⋯ + c m x ⇀ m ( t ) c_1\overrightharpoon{x}_1(t)+c_2\overrightharpoon{x}_2(t)+\dots+c_m\overrightharpoon{x}_m(t) c1x 1(t)+c2x 2(t)++cmx m(t)也是原方程的解
    • 线性相关:存在一组不全为零的 c i c_i ci使得 c 1 x ⇀ 1 ( t ) + c 2 x ⇀ 2 ( t ) + ⋯ + c m x ⇀ m ( t ) ≡ 0 c_1\overrightharpoon{x}_1(t)+c_2\overrightharpoon{x}_2(t)+\dots+c_m\overrightharpoon{x}_m(t)\equiv0 c1x 1(t)+c2x 2(t)++cmx m(t)0对任意 t ∈ [ a , b ] t\in [a,b] t[a,b]成立,则 x ⇀ 1 ( t ) , x ⇀ 2 ( t ) , … , x ⇀ m ( t ) \overrightharpoon{x}_1(t),\overrightharpoon{x}_2(t),\dots,\overrightharpoon{x}_m(t) x 1(t),x 2(t),,x m(t)线性相关
    • 向量函数 W r o n s k y Wronsky Wronsky行列式: W [ x ⇀ 1 ( t ) , … , x ⇀ n ( t ) ] = ∣ ( x ⇀ 1 ( t ) , … , x ⇀ n ( t ) ) ∣ = ∣ x 11 ( t ) ⋯ x 1 n ( t ) ⋮ ⋱ ⋮ x n 1 ( t ) ⋯ x n n ( t ) ∣ [ a , b ] 上 线 性 相 关 ⇔ [ a , b ] 上 W ( t ) ≡ 0 [ a , b ] 上 线 性 无 关 ⇔ [ a , b ] 上 W ( t ) ≠ 0 \\W[\overrightharpoon{x}_1(t),\dots,\overrightharpoon{x}_n(t)]=|(\overrightharpoon{x}_1(t),\dots,\overrightharpoon{x}_n(t))|=\left|\begin{matrix}x_{11}(t) & \cdots & x_{1n}(t)\\\vdots & \ddots & \vdots\\x_{n1}(t) & \cdots & x_{nn}(t)\end{matrix}\right| \\ [a,b]上线性相关\Leftrightarrow [a,b]上W(t)\equiv0 \\ [a,b]上线性无关\Leftrightarrow [a,b]上W(t)\ne0 W[x 1(t),,x n(t)]=(x 1(t),,x n(t))=x11(t)xn1(t)x1n(t)xnn(t)[a,b]线[a,b]W(t)0[a,b]线[a,b]W(t)=0
    • 齐次线性微分方程组一定存在n个线性无关的解
    • 通解结构: x ⇀ ( t ) = c 1 x ⇀ 1 ( t ) + c 2 x ⇀ 2 ( t ) + ⋯ + c n x ⇀ n ( t ) \overrightharpoon{x}(t)=c_1\overrightharpoon{x}_1(t)+c_2\overrightharpoon{x}_2(t)+\dots+c_n\overrightharpoon{x}_n(t) x (t)=c1x 1(t)+c2x 2(t)++cnx n(t) x ⇀ 1 ( t ) , x ⇀ 2 ( t ) , … , x ⇀ n ( t ) \overrightharpoon{x}_1(t),\overrightharpoon{x}_2(t),\dots,\overrightharpoon{x}_n(t) x 1(t),x 2(t),,x n(t)线性无关(基本解组)
    • n阶线性微分方程是特殊的线性微分方程组(就像这样)
    • 解矩阵、基解矩阵:
      • Φ ( t ) = ( x ⇀ 1 ( t ) , x ⇀ 2 ( t ) , … , x ⇀ n ( t ) ) 满 足 Φ ′ ( t ) = A ( t ) Φ ( t ) \Phi(t)=(\overrightharpoon{x}_1(t),\overrightharpoon{x}_2(t),\dots,\overrightharpoon{x}_n(t))\\满足\Phi'(t)=A(t)\Phi(t) Φ(t)=(x 1(t),x 2(t),,x n(t))Φ(t)=A(t)Φ(t),该矩阵为解矩阵。
      • x ⇀ 1 ( t ) , x ⇀ 2 ( t ) , … , x ⇀ n ( t ) \overrightharpoon{x}_1(t),\overrightharpoon{x}_2(t),\dots,\overrightharpoon{x}_n(t) x 1(t),x 2(t),,x n(t)为基本解组时,该矩阵为基解矩阵。
      • Φ ( t ) \Phi(t) Φ(t)为基解矩阵 ⇔ \Leftrightarrow ∣ Φ ( t ) ∣ ≠ 0 , t ∈ [ a , b ] |\Phi(t)|\ne 0,t\in [a,b] Φ(t)=0,t[a,b] ⇔ \Leftrightarrow 对某一 t 0 ∈ [ a , b ] t_0\in [a,b] t0[a,b], ∣ Φ ( t 0 ) ∣ ≠ 0 |\Phi(t_0)|\ne 0 Φ(t0)=0
      • ψ ⇀ ( t ) = Φ ( t ) C ⇀ \overrightharpoon{\psi}(t)=\Phi(t)\overrightharpoon{C} ψ (t)=Φ(t)C (线性组合)也是方程的解
      • Ψ ( t ) = Φ ( t ) C \Psi(t)=\Phi(t)C Ψ(t)=Φ(t)C(线性变换, C C C可逆)也是基解矩阵
    • 通解可以表示为 ψ ⇀ ( t ) = Φ ( t ) C ⇀ \overrightharpoon{\psi}(t)=\Phi(t)\overrightharpoon{C} ψ (t)=Φ(t)C 其中 Φ ( t ) \Phi(t) Φ(t)为基解矩阵
  • 一阶非齐次
    • x ⇀ ′ = A ( t ) x ⇀ + f ⇀ ( t ) \overrightharpoon{x}'=A(t)\overrightharpoon{x}+\overrightharpoon{f}(t) x =A(t)x +f (t)
    • 解的和、差亦为原方程解
    • 通解基本结构: φ ⇀ ( t ) = Φ ( t ) C ⇀ + φ ~ ⇀ ( t ) \overrightharpoon{\varphi}(t)=\Phi(t)\overrightharpoon{C}+\overrightharpoon{\widetilde{\varphi}}(t) φ (t)=Φ(t)C +φ (t) Φ ( t ) \Phi(t) Φ(t)为基解矩阵, φ ~ ⇀ ( t ) \overrightharpoon{\widetilde{\varphi}}(t) φ (t)为该非齐次线性微分方程的一个解
    • 常数变易公式 ( t ∈ [ a , b ] , φ ⇀ ( t ) = 0 ) (t\in [a,b],\overrightharpoon{\varphi}(t)=0) (t[a,b],φ (t)=0)
      • φ ⇀ ( t ) = Φ ( t ) C ⇀ ⇒ φ ⇀ ( t ) = Φ ( t ) C ⇀ ( t ) \overrightharpoon{\varphi}(t)=\Phi(t)\overrightharpoon{C}\Rightarrow\overrightharpoon{\varphi}(t)=\Phi(t)\overrightharpoon{C}(t) φ (t)=Φ(t)C φ (t)=Φ(t)C (t)
      • Φ ′ ( t ) C ⇀ ( t ) + Φ ( t ) C ⇀ ′ ( t ) = A ( t ) Φ ( t ) C ⇀ ( t ) + f ⇀ ( t ) \Phi'(t)\overrightharpoon{C}(t)+\Phi(t)\overrightharpoon{C}'(t)=A(t)\Phi(t)\overrightharpoon{C}(t)+\overrightharpoon{f}(t) Φ(t)C (t)+Φ(t)C (t)=A(t)Φ(t)C (t)+f (t)
      • C ⇀ ( t ) = ∫ t 0 t Φ − 1 ( s ) f ⇀ ( s ) d s \overrightharpoon{C}(t)=\int_{t_0}^{t}\Phi^{-1}(s)\overrightharpoon{f}(s)ds C (t)=t0tΦ1(s)f (s)ds
      • 特解: φ ⇀ ( t ) = Φ ( t ) ∫ t 0 t Φ − 1 ( s ) f ⇀ ( s ) d s φ ⇀ ( t ) = Φ ( t ) Φ − 1 ( t 0 ) η ⇀ + Φ ( t ) ∫ t 0 t Φ − 1 ( s ) f ⇀ ( s ) d s ( φ ⇀ ( t 0 ) = η ⇀ ) \overrightharpoon{\varphi}(t)=\Phi(t)\int_{t_0}^{t}\Phi^{-1}(s)\overrightharpoon{f}(s)ds\\\quad\quad\quad\overrightharpoon{\varphi}(t)=\Phi(t)\Phi^{-1}(t_0)\overrightharpoon{\eta}+\Phi(t)\int_{t_0}^{t}\Phi^{-1}(s)\overrightharpoon{f}(s)ds\quad(\overrightharpoon{\varphi}(t_0)=\overrightharpoon{\eta}) φ (t)=Φ(t)t0tΦ1(s)f (s)dsφ (t)=Φ(t)Φ1(t0)η +Φ(t)t0tΦ1(s)f (s)ds(φ (t0)=η )
      • n n n阶非齐次线性微分方程:
        • d n x d t n + a 1 ( t ) d n − 1 x d t n − 1 + ⋯ + a n ( t ) x = f ( t ) \frac{d^nx}{dt^n}+a_1(t)\frac{d^{n-1}x}{dt^{n-1}}+\dots+a_n(t)x=f(t) dtndnx+a1(t)dtn1dn1x++an(t)x=f(t)
        • φ ( t ) = ∑ k = 1 n x k ( t ) ∫ t 0 t W k [ x 1 ( s ) , … , x n ( s ) ] W [ x 1 ( s ) , … , x n ( s ) ] f ( s ) d s \varphi(t)=\sum_{k=1}^{n}x_k(t)\int_{t_0}^{t}\frac{W_k[x_1(s),\dots,x_n(s)]}{W[x_1(s),\dots,x_n(s)]}f(s)ds φ(t)=k=1nxk(t)t0tW[x1(s),,xn(s)]Wk[x1(s),,xn(s)]f(s)ds W k W_k Wk是以 ( 0 , 0 , … , 1 ) T (0,0,\dots,1)^T (0,0,,1)T取代第 k k k列后的 W W W
        • n = 2 时 , φ ( t ) = ∫ t 0 t x 2 ( t ) x 1 ( s ) − x 1 ( t ) x 2 ( s ) W [ x 1 ( s ) , x 2 ( s ) ] f ( s ) d s n=2时,\varphi(t)=\int_{t_0}^{t}\frac{x_2(t)x_1(s)-x_1(t)x_2(s)}{W[x_1(s),x_2(s)]}f(s)ds n=2φ(t)=t0tW[x1(s),x2(s)]x2(t)x1(s)x1(t)x2(s)f(s)ds

常系数线性微分方程组

  • d x d t = A x + f ( t ) \frac{dx}{dt}=Ax+f(t) dtdx=Ax+f(t)
  • d x d t = A x \frac{dx}{dt}=Ax dtdx=Ax
  • 矩阵指数
    • exp ⁡ A = ∑ k = 0 ∞ A k k ! \exp A=\sum_{k=0}^{\infty}\frac{A^k}{k!} expA=k=0k!Ak(一定为实矩阵)
    • 若 A B = B A , 则 exp ⁡ ( A + B ) = exp ⁡ A exp ⁡ B 若AB=BA,则\exp (A+B)=\exp A \exp B AB=BAexp(A+B)=expAexpB
    • ( exp ⁡ A ) − 1 = exp ⁡ ( − A ) (\exp A)^{-1}=\exp(-A) (expA)1=exp(A)
    • 若 T 可 逆 则 exp ⁡ ( T − 1 A T ) = T − 1 ( exp ⁡ A ) T 若T可逆则\exp(T^{-1}AT)=T^{-1}(\exp A)T Texp(T1AT)=T1(expA)T
  • 常系数线性微分方程组的基解矩阵
    • x ⇀ ′ = A x ⇀ ⇒ Φ ( t ) = exp ⁡ A t \overrightharpoon{x}'=A\overrightharpoon{x}\Rightarrow\Phi(t)=\exp At x =Ax Φ(t)=expAt
    • 基解矩阵的求法之一:
      • A = T − 1 J T A=T^{-1}JT A=T1JT(可逆线性替换,变换为对角矩阵,对于乘方比较容易算)
      • exp ⁡ A t = T − 1 ( exp ⁡ J t ) T \exp At=T^{-1}(\exp Jt)T expAt=T1(expJt)T即为基解矩阵
  • 基解矩阵计算公式
    • x ⇀ ′ = A ( t ) x ⇀ x ⇀ ( 0 ) = η ⇀ \overrightharpoon{x}'=A(t)\overrightharpoon{x}\\\overrightharpoon{x}(0)=\overrightharpoon{\eta} x =A(t)x x (0)=η
    • ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0计算矩阵特征值
    • 解方程 ( λ i E − A ) x i ⇀ = 0 (\lambda_i E-A)\overrightharpoon{x_i}=0 (λiEA)xi =0进而求得 n n n个特征向量(对于重根的特征值所从属的特征向量,含有重数个基础解)有线性无关特征向量 v 1 ⇀ , v 2 ⇀ , … , v n ⇀ \overrightharpoon{v_1},\overrightharpoon{v_2},\dots,\overrightharpoon{v_n} v1 ,v2 ,,vn 对应特征值 λ 1 , λ 2 , … , λ n \lambda_1,\lambda_2,\dots,\lambda_n λ1,λ2,,λn
    • Φ ( t ) = ( e λ 1 t v ⇀ 1 , e λ 2 t v ⇀ 2 , … , e λ n t v ⇀ n ) \Phi(t)=(e^{\lambda_1t}\overrightharpoon{v}_1,e^{\lambda_2t}\overrightharpoon{v}_2,\dots,e^{\lambda_nt}\overrightharpoon{v}_n) Φ(t)=(eλ1tv 1,eλ2tv 2,,eλntv n)
    • exp ⁡ A t = Φ ( t ) Φ ( 0 ) − 1 \exp At=\Phi(t)\Phi(0)^{-1} expAt=Φ(t)Φ(0)1当且仅当 Φ ( 0 ) = E \Phi(0)=E Φ(0)=E时, exp ⁡ A t \exp At expAt就是 Φ ( t ) \Phi(t) Φ(t)
  • 满足初值条件特解的求法
    • v ⇀ 1 + v ⇀ 2 + ⋯ + v ⇀ k = η ⇀ \overrightharpoon{v}_1+\overrightharpoon{v}_2+\dots+\overrightharpoon{v}_k=\overrightharpoon{\eta} v 1+v 2++v k=η v i v_i vi满足 η i \eta_i ηi的形式。
    • φ ⇀ ( t ) = ∑ j = 1 k e λ j t { ∑ i = 0 n j − 1 ( A − λ j E ) t i i ! } v ⇀ j \overrightharpoon{\varphi}(t)=\sum_{j=1}^{k}e^{\lambda_j t}\{\sum^{n_j-1}_{i=0}(A-\lambda_j E)\frac{t^i}{i!}\}\overrightharpoon{v}_j φ (t)=j=1keλjt{i=0nj1(AλjE)i!ti}v j
    • 当仅有一个重数为 n n n的特征根时, φ ⇀ ( t ) = e λ t { ∑ i = 0 n − 1 ( A − λ E ) t i i ! } \overrightharpoon{\varphi}(t)=e^{\lambda t}\{\sum^{n-1}_{i=0}(A-\lambda E)\frac{t^i}{i!}\} φ (t)=eλt{i=0n1(AλE)i!ti}
  • 非齐次线性方程组
    • φ ⇀ ( t ) = Φ ( t ) Φ − 1 ( t 0 ) η ⇀ + Φ ( t ) ∫ t 0 t Φ − 1 ( s ) f ⇀ ( s ) d s ( φ ⇀ ( t 0 ) = η ⇀ ) \overrightharpoon{\varphi}(t)=\Phi(t)\Phi^{-1}(t_0)\overrightharpoon{\eta}+\Phi(t)\int_{t_0}^{t}\Phi^{-1}(s)\overrightharpoon{f}(s)ds\quad(\overrightharpoon{\varphi}(t_0)=\overrightharpoon{\eta}) φ (t)=Φ(t)Φ1(t0)η +Φ(t)t0tΦ1(s)f (s)ds(φ (t0)=η )

非线性微分方程及稳定性

  • 一般高阶微分方程转化为微分方程组
  • 自治系统(驻定方程组):右端不显含t
  • 稳定性:
    • 稳定: ∀ ε > 0 , ∃ δ = δ ( ε , t 0 ) , ∀ ∣ ∣ x 1 − x 0 ∣ ∣ < δ , ∣ ∣ φ ( t , t 0 , x 1 ) − φ ( t , t 0 , x 0 ) ∣ ∣ < ε 对 任 意 t > t 0 恒 成 立 \forall\varepsilon\gt0, \exist \delta=\delta(\varepsilon,t_0),\forall ||x_1-x_0||\lt\delta, ||\varphi(t,t_0,x_1)-\varphi(t,t_0,x_0)||\lt \varepsilon对任意t\gt t_0恒成立 ε>0,δ=δ(ε,t0),x1x0<δ,φ(t,t0,x1)φ(t,t0,x0)<εt>t0
    • 渐进稳定: 稳 定 , 且 ∃ δ , s . t . ∀ ∣ ∣ x 1 − x 0 ∣ ∣ < δ , lim ⁡ t → ∞ ( φ ( t , t 0 , x 0 ) − φ ( t , t 0 , x 1 ) ) = 0 稳定,且\exist\delta,s.t.\forall ||x_1-x_0||\lt\delta, \underset{t\rightarrow\infty}{\lim}(\varphi(t,t_0,x_0)-\varphi(t,t_0,x_1))=0 δ,s.t.x1x0<δ,tlim(φ(t,t0,x0)φ(t,t0,x1))=0
    • 零解渐进稳定:上式中 x 0 = 0 x_0=0 x0=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值