微分方程笔记

微分方程

  • 定义:含有未知数,未知函数,未知函数微分的的等式。
  • 一阶微分方程
    • 可分离变量型
    • 微分齐次方程: d y d x = ϕ ( y x ) \frac{dy}{dx}=\phi(\frac{y}{x}) dxdy=ϕ(xy),可令 u = y x u=\frac{y}{x} u=xy,将其转换为可分离变量型
  • 二阶微分方程
    • 可降阶的微分方程
      1. y ′ ′ = f ( x ) y^{''}=f(x) y′′=f(x)
      2. y ′ ′ = f ( x , y ′ ) y^{''}=f(x,y^{'}) y′′=f(x,y) p = y ′ p=y^{'} p=y进行降阶
      3. y ′ ′ = f ( y , y ′ ) y^{''}=f(y,y^{'}) y′′=f(y,y) p = y ′ p=y^{'} p=y进行降阶
  • 一阶线性微分方程: d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)
    • 一阶线性齐次微分方程: d y d x + P ( x ) y = 0 \frac{dy}{dx}+P(x)y=0 dxdy+P(x)y=0
      (可通过分离变量法解出通解)
    • 一阶线性非齐次微分方程:(通解=对应齐次通解+特解)
      1. 求对应齐次型的通解
      2. 使用常数易变法求出通解
  • 二阶线性常系数微分方程: d 2 y d 2 x + p y ′ + q y = f ( x ) \frac{d^2y}{d^2x}+py^{'}+qy=f(x) d2xd2y+py+qy=f(x)
    • 二阶线性常系数齐次微分方程: d 2 y d 2 x + p y ′ + q y = 0 \frac{d^2y}{d^2x}+py^{'}+qy=0 d2xd2y+py+qy=0
      • 两个线性无关的特解 y 1 ( x ) , y 2 ( x ) 的和 C 1 y 1 ( x ) + C 2 y 2 ( x ) y_1(x),y_2(x)的和C_1 y_1(x)+C_2 y_2(x) y1(x),y2(x)的和C1y1(x)+C2y2(x)为其通解
      • 二阶线性常系数微分方程,线性无关特解求解步骤:
        1. 写出特征方程: r 2 + p x + q = 0 r^2+px+q=0 r2+px+q=0
        2. 求出特征值。
          • p 2 − 4 q > 0 p^2-4q > 0 p24q>0:有两个实根 r 1 , r 2 r_1,r_2 r1,r2
          • p 2 − 4 q = 0 p^2-4q = 0 p24q=0: 两个实重根 r 1 = r 2 r_1=r_2 r1=r2
          • p 2 − 4 q < 0 p^2-4q <0 p24q<0:共轭复根 α + i β , α − i β \alpha+i\beta, \alpha-i\beta α+iβ,αiβ
        3. 根据特征值写出方程通解。
          • C 1 e r 1 x + C 2 e r 2 x C_1e^{r_1x}+C_2e^{r_2x} C1er1x+C2er2x
          • C 1 e r 1 x + C 2 x e r 1 x C_1e^{r_1x}+C_2xe^{r_1x} C1er1x+C2xer1x
          • e α x ( C 1 c o s β + C 2 s i n β ) e^{\alpha x}(C_1cos\beta+C_2sin\beta) eαx(C1cosβ+C2sinβ)
      • n阶常系数齐次线性微分方程解法:
        • 方程的一般形式: y ( n ) + p 1 y ( n − 1 ) + . . . + p n y = 0 y^{(n)}+p_1y^{(n-1)}+...+p_ny=0 y(n)+p1y(n1)+...+pny=0
        • 特征方程: r n + p 1 r n − 1 + . . . + p n = 0 r^n+p_1r^{n-1}+...+p_n=0 rn+p1rn1+...+pn=0
          1. 无重根的实根情况: C 1 e r 1 x + . . . + C n e r n x C_1e^{r_1x}+...+C_ne^{r_nx} C1er1x+...+Cnernx
          2. k重实根情况: C 1 e r 1 x + . . . + ( D 0 + D 1 x + . . . + D k − 1 x k − 1 ) e r j x + . . . C_1e^{r_1x}+...+(D_0+D_1x+...+D_{k-1}x^{k-1})e^{r_jx}+... C1er1x+...+(D0+D1x+...+Dk1xk1)erjx+...
          3. 无重根的共轭复根情况: e α 1 x ( C 1 c o s β 1 x + D 1 s i n β 1 x ) + . . . e^{\alpha_1x}(C_1cos\beta_1 x+D_1sin\beta_1 x)+... eα1x(C1cosβ1x+D1sinβ1x)+...
          4. k重共轭复根情况: e α 1 x ( C 1 c o s β 1 x + D 1 s i n β 1 x ) + . . . + e α j x [ ( D 0 + D 1 x + . . . + D k − 1 x k − 1 ) c o s β j x + ( E 0 + E 1 x + . . . + E k − 1 x k − 1 ) s i n β j x ] + . . . . . e^{\alpha_1x}(C_1cos\beta_1 x+D_1sin\beta_1 x)+...+e^{\alpha_j x}[(D_0+D_1x+...+D_{k-1}x^{k-1})cos\beta_j x+(E_0+E_1x+...+E_{k-1}x^{k-1})sin\beta_j x]+..... eα1x(C1cosβ1x+D1sinβ1x)+...+eαjx[(D0+D1x+...+Dk1xk1)cosβjx+(E0+E1x+...+Ek1xk1)sinβjx]+.....
    • 二阶线性常系数非齐次方程:通解=对应齐次型的通解+特解
      • 方程一般形式: y ′ ′ + p y ′ + q y = f ( x ) y^{''}+py^{'}+qy=f(x) y′′+py+qy=f(x)
      • 解法步骤:
        1. 求对应的二阶常系数齐次线性微分方程的通解
        2. 求非齐次的特解
          a. f ( x ) = e λ x P n ( x ) f(x)=e^{\lambda x}P_n(x) f(x)=eλxPn(x)形式
          - λ \lambda λ不是特征方程的根: y ∗ = e λ x Q n ( x ) y^*=e^{\lambda x}Q_n(x) y=eλxQn(x)
          - λ \lambda λ是特征方程的单根: y ∗ = e λ x x Q n ( x ) y^*=e^{\lambda x}xQ_n(x) y=eλxxQn(x)
          - λ \lambda λ是特征方程的二重根: y ∗ = e λ x x 2 Q n ( x ) y^*=e^{\lambda x}x^2Q_n(x) y=eλxx2Qn(x)
          b. f ( x ) = e λ x [ P I ( x ) c o s β x + P K ( n ) s i n β x ] f(x)=e^{\lambda x}[P_I(x)cos\beta x+P_K(n)sin\beta x] f(x)=eλx[PI(x)cosβx+PK(n)sinβx]形式
          - λ + / − i β \lambda+/-i\beta λ+/iβ不是特征方程根: y ∗ = e λ x [ Q m ( 1 ) ( x ) c o s β x + Q m ( 2 ) ( x ) s i n β x ] y^*=e^{\lambda x}[Q_m^{(1)}(x)cos\beta x+Q_m^{(2)}(x)sin\beta x] y=eλx[Qm(1)(x)cosβx+Qm(2)(x)sinβx]
          - KaTeX parse error: Undefined control sequence: \lambad at position 1: \̲l̲a̲m̲b̲a̲d̲+/-i\beta是特征方程的根: y ∗ = x e λ x [ Q m ( 1 ) ( x ) c o s β x + Q m ( 2 ) ( x ) s i n β x ] y^*=xe^{\lambda x}[Q_m^{(1)}(x)cos\beta x+Q_m^{(2)}(x)sin\beta x] y=xeλx[Qm(1)(x)cosβx+Qm(2)(x)sinβx]
  • 二阶线性微分方程:
    • 如果 y 1 ∗ , y 2 ∗ 分别为 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) 和 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 2 ( x ) 的特解,则有, y 1 ∗ + y 2 ∗ 为 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) + f 2 ( x ) 的特解 如果y_1^*,y_2^*分别为y^{''}+P(x)y^{'}+Q(x)y=f_1(x)和y^{''}+P(x)y^{'}+Q(x)y=f_2(x)的特解,则有,y_1^*+y_2^*为y^{''}+P(x)y^{'}+Q(x)y=f_1(x)+f_2(x)的特解 如果y1,y2分别为y′′+P(x)y+Q(x)y=f1(x)y′′+P(x)y+Q(x)y=f2(x)的特解,则有,y1+y2y′′+P(x)y+Q(x)y=f1(x)+f2(x)的特解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值