奇变偶不变,符号看象限

三角函数诱导公式口诀详解:奇变偶不变,符号看象限

口诀解析

1. 口诀含义

  • 奇变偶不变

    • 奇/偶:指角度加减的是π/2(90°)的奇数倍还是偶数倍
      • 奇数倍(如π/2, 3π/2)→ 函数名改变(sin↔cos, tan↔cot, sec↔csc)
      • 偶数倍(如π, 2π)→ 函数名不变
  • 符号看象限

    • 变换后的三角函数符号由原角度所在象限对应的函数符号决定
    • 需将变换后的角度视为锐角,判断其象限,再根据原函数的正负性确定符号

2. 使用步骤

  1. 确定变换类型

    • 例:sin(π/2 + α)中,π/2是奇数倍→函数名变为cos
  2. 符号判断

    • 设α为锐角,π/2 + α在第二象限,此时正弦(sin)为正→结果符号为"+"
    • 因此:sin(π/2 + α) = +cosα

常见公式示例

公式(α为锐角)变换逻辑结果
sin(π - α)π是偶数倍,函数名不变;π-α在第二象限,sin为正+sinα
cos(π/2 + α)π/2是奇数倍,函数名变sin;π/2+α在第二象限,cos为负-sinα
tan(π + α)π是偶数倍,函数名不变;π+α在第三象限,tan为正+tanα

符号规则总结(α为锐角)

象限sin/csccos/sectan/cot
第一象限(α)+++
第二象限(π-α)+--
第三象限(π+α)--+
第四象限(2π-α)-+-

注意事项

  1. 角度需先化简为kπ/2 ± α形式(k为整数)
  2. 若α不是锐角,可先通过周期性化为锐角再判断
  3. 该口诀适用于所有基本三角函数(sin/cos/tan/cot/sec/csc)

通过这个口诀,可以快速推导出任意角度的三角函数值,是解决三角函数问题的利器!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值