Dijkstra算法详解
问题引入
给定一个 n个点,m条有向边的带非负权图,请你计算从 s 出发,到每个点的距离。
数据保证你能从 s 出发到任意点。
这基本上是单源最短路径的基本问题
Dijkstra算法介绍
- Dijkstra 算法基于贪心思想,它只适用于所有边的长度都是非负数的图。当边长z都是非负数时,全局最小值不可能再被其他节点更新,故在第1步中选出的节点 x必然满足:dist[x]已经是起点到 x的最短路径。我们不断选择全局最小值进行标记和扩展,最终可得到起点1到每个节点的最短路径的长度。
- Dijkstra的时间复杂度上限为 O (n^2) (朴素,未经过优化),在实际应用中较为稳定;加上堆优化之后更是具有 O ((N+M)logN) 的时间复杂度,在稠密图中有不俗的表现。
- 在该算法的计算中不能存在负边权,某些算法基于此改进Dijkstra算法,例如:Johnson 算法,复杂度 O(NMlogN)。
Dijkstra算法实现的过程
- 选取源点S(单源最短路径嘛),初始化dist[s] = 0,其余节点为正无穷大。
- 找出一个未被标记的、dist[x]最小的节点x,之后标记节点x。
- 扫描节点的所有出边(x,y,z),若 dist[y] > dist[x] + z 则用 dist[y] = dist[x] + z 更新 dist[y]。
- 重复以上2、3步骤,直到所有的节点都被标记。
举个例子
在例图中有6个节点(u v w x y z),节点之间的连线表示路径,连线上的数字表示路径花费,路径花费是固定的,假设 u 为源点 s。(queue:u)
step | 出发点 | u点 | v点 | w点 | x点 | y点 | z点 |
---|---|---|---|---|---|---|---|
初始化 | u | 0 | ∞ | ∞ | ∞ | ∞ | ∞ |
1.首先我们找到未被标记的点中dist最小的点:u
那么接下来标记点u(弹出u点),更新可以通过u实现更新的点,有x,v,w。
更新一下dist表格的内容:(queue:v,w,x)
step | 出发点 | u点 | v点 | w点 | x点 | y点 | z点 |
---|---|---|---|---|---|---|---|
1 | u | 0(标记) | 2 | 5 | 1 | ∞ | ∞ |
2.我们找到未被标记的点中dist最小的点:x
那么接下来标记点x(弹出x点),更新可以通过x实现更新的点,有u,v,w,y
但其实v和u点并没有更新,因为通过x点后,u到这些点的距离就更远了。
更新一下dist表格的内容:(queue:v,w,y)
step | 出发点 | u点 | v点 | w点 | x点 | y点 | z点 |
---|---|---|---|---|---|---|---|
1 | u | 0(标记) | 2 | 5 | 1 | ∞ | ∞ |
2 | x | 0(标记) | 2 | 4 | 1(标记) | 2 | ∞ |
3.我们找到未被标记的点中dist最小的点:v
那么接下来标记点v(弹出v点),更新可以通过v实现更新的点,有u,x,w
但其实x和u点并没有更新,因为通过v点后,u到这些点的距离就更远了或者并没有改变值。
更新一下dist表格的内容:(queue:w,y)
step | 出发点 | u点 | v点 | w点 | x点 | y点 | z点 |
---|---|---|---|---|---|---|---|
1 | u | 0(标记) | 2 | 5 | 1 | ∞ | ∞ |
2 | x | 0(标记) | 2 | 4 | 1(标记) | 2 | ∞ |
3 | v | 0(标记) | 2(标记) | 4 | 1(标记) | 2 | ∞ |
4.我们找到未被标记的点中dist最小的点:y
那么接下来标记点y(弹出v点),更新可以通过y实现更新的点,有x,w,z
更新一下dist表格的内容:(queue:w,z)
step | 出发点 | u点 | v点 | w点 | x点 | y点 | z点 |
---|---|---|---|---|---|---|---|
1 | u | 0(标记) | 2 | 5 | 1 | ∞ | ∞ |
2 | x | 0(标记) | 2 | 4 | 1(标记) | 2 | ∞ |
3 | v | 0(标记) | 2(标记) | 4 | 1(标记) | 2 | ∞ |
4 | y | 0(标记) | 2(标记) | 3 | 1(标记) | 2(标记) | 4 |
5.我们找到未被标记的点中dist最小的点:w
那么接下来标记点y(弹出v点),更新可以通过y实现更新的点,有u,x,y,z
更新一下dist表格的内容:(queue:z)
step | 出发点 | u点 | v点 | w点 | x点 | y点 | z点 |
---|---|---|---|---|---|---|---|
1 | u | 0(标记) | 2 | 5 | 1 | ∞ | ∞ |
2 | x | 0(标记) | 2 | 4 | 1(标记) | 2 | ∞ |
3 | v | 0(标记) | 2(标记) | 4 | 1(标记) | 2 | ∞ |
4 | y | 0(标记) | 2(标记) | 3 | 1(标记) | 2(标记) | 4 |
5 | w | 0(标记) | 2(标记) | 3(标记) | 1(标记) | 2(标记) | 4 |
6.我们找到未被标记的点中dist最小的点:z
那么接下来标记点y(弹出v点),更新可以通过y实现更新的点,有w,y
更新一下dist表格的内容:(queue:)
step | 出发点 | u点 | v点 | w点 | x点 | y点 | z点 |
---|---|---|---|---|---|---|---|
1 | u | 0(标记) | 2 | 5 | 1 | ∞ | ∞ |
2 | x | 0(标记) | 2 | 4 | 1(标记) | 2 | ∞ |
3 | v | 0(标记) | 2(标记) | 4 | 1(标记) | 2 | ∞ |
4 | y | 0(标记) | 2(标记) | 3 | 1(标记) | 2(标记) | 4 |
5 | w | 0(标记) | 2(标记) | 3(标记) | 1(标记) | 2(标记) | 4 |
6 | z | 0(标记) | 2(标记) | 3(标记) | 1(标记) | 2(标记) | 4(标记) |
最终结果:
参考代码:朴素算法
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 7;
const int inf = 2147483647;
int mp[maxn >> 16][maxn >> 16], dist[maxn >> 16], n, m, s;
bool vis[maxn >> 16];
void dijkstra()
{
for (int i = 1; i <= n; i++) dist[i] = inf;
for (int i = 1; i <= n; i++) vis[i] = false;
dist[s] = 0;
for (int i = 1; i < n; i++) //重复n - 1次即可
{
int x = 0;
for (int j = 1; j <= n; j++)
if (!vis[j] && (x == 0 || dist[j] < dist[x]))
x = j;
if (x == 0) break;
vis[x] = true;
for (int y = 1; y <= n; y++)
dist[y] = min(dist[y], dist[x] + mp[x][y]);
}
}
int main()
{
cin >> n >> m >> s;
memset(mp, 0x3f3f3f, sizeof(mp));
for (int i = 1; i <= m; i++)
{
int x, y, z;
cin >> x >> y >> z;
mp[x][y] = min(mp[x][y], z);
}
dijkstra();
for (int i = 1; i <= n; i++)
cout << dist[i] << " ";
cout << endl;
return 0;
}
参考代码:堆优化,涉及链式前向星
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 7;
const int inf = (1 << 31) - 1;
int n, m, s, tot = 1;
int head[maxn], ver[maxn], edge[maxn], nxt[maxn], dist[maxn];
bool vis[maxn];
struct Node
{
int dis, pos;
bool operator < (const Node &x) const
{
return dis > x.dis;
}
};
priority_queue<Node> q;
void addE(int u, int v, int w)
{
ver[++tot] = v;
edge[tot] = w;
nxt[tot] = head[u];
head[u] = tot;
}
void dijkstra()
{
for (int i = 1; i <= n; i++)
{
dist[i] = inf;
vis[i] = false;
}
dist[s] = 0;
q.push({0, s});
while (q.size())
{
int x = q.top().pos;
q.pop();
if (vis[x])
continue;
vis[x] = true;
for (int i = head[x]; i; i = nxt[i])
{
int y = ver[i], z = edge[i];
if (dist[y] > dist[x] + z)
{
dist[y] = dist[x] + z;
q.push({dist[y], y});
}
}
}
}
int main()
{
scanf("%d %d %d", &n, &m, &s);
for (int i = 1; i <= m; i++)
{
int x, y, z;
scanf("%d %d %d", &x, &y, &z);
addE(x, y, z);
}
dijkstra();
for (int i = 1; i <= n; i++)
cout << dist[i] << " ";
return 0;
}
参考来源:
- 《算法进阶指南(李煜东)》