Dijkstra算法详解

Dijkstra算法详解

问题引入

P4779 单源最短路径

给定一个 n个点,m条有向边的带非负权图,请你计算从 s 出发,到每个点的距离。

数据保证你能从 s 出发到任意点。

这基本上是单源最短路径的基本问题

Dijkstra算法介绍

  1. Dijkstra 算法基于贪心思想,它只适用于所有边的长度都是非负数的图。当边长z都是非负数时,全局最小值不可能再被其他节点更新,故在第1步中选出的节点 x必然满足:dist[x]已经是起点到 x的最短路径。我们不断选择全局最小值进行标记和扩展,最终可得到起点1到每个节点的最短路径的长度。
  2. Dijkstra的时间复杂度上限为 O (n^2) (朴素,未经过优化),在实际应用中较为稳定;加上堆优化之后更是具有 O ((N+M)logN) 的时间复杂度,在稠密图中有不俗的表现。
  3. 在该算法的计算中不能存在负边权,某些算法基于此改进Dijkstra算法,例如:Johnson 算法,复杂度 O(NMlogN)。

Dijkstra算法实现的过程

  1. 选取源点S(单源最短路径嘛),初始化dist[s] = 0,其余节点为正无穷大。
  2. 找出一个未被标记的、dist[x]最小的节点x,之后标记节点x。
  3. 扫描节点的所有出边(x,y,z),若 dist[y] > dist[x] + z 则用 dist[y] = dist[x] + z 更新 dist[y]。
  4. 重复以上2、3步骤,直到所有的节点都被标记。

举个例子

在这里插入图片描述

在例图中有6个节点(u v w x y z),节点之间的连线表示路径,连线上的数字表示路径花费,路径花费是固定的,假设 u 为源点 s。(queue:u)

step出发点u点v点w点x点y点z点
初始化u0

1.首先我们找到未被标记的点中dist最小的点:u

那么接下来标记点u(弹出u点),更新可以通过u实现更新的点,有x,v,w。

在这里插入图片描述

更新一下dist表格的内容:(queue:v,w,x)

step出发点u点v点w点x点y点z点
1u0(标记)251

2.我们找到未被标记的点中dist最小的点:x

那么接下来标记点x(弹出x点),更新可以通过x实现更新的点,有u,v,w,y

但其实v和u点并没有更新,因为通过x点后,u到这些点的距离就更远了。

在这里插入图片描述

更新一下dist表格的内容:(queue:v,w,y)

step出发点u点v点w点x点y点z点
1u0(标记)251
2x0(标记)241(标记)2

3.我们找到未被标记的点中dist最小的点:v

那么接下来标记点v(弹出v点),更新可以通过v实现更新的点,有u,x,w

但其实x和u点并没有更新,因为通过v点后,u到这些点的距离就更远了或者并没有改变值。

在这里插入图片描述

更新一下dist表格的内容:(queue:w,y)

step出发点u点v点w点x点y点z点
1u0(标记)251
2x0(标记)241(标记)2
3v0(标记)2(标记)41(标记)2

4.我们找到未被标记的点中dist最小的点:y

那么接下来标记点y(弹出v点),更新可以通过y实现更新的点,有x,w,z

在这里插入图片描述

更新一下dist表格的内容:(queue:w,z)

step出发点u点v点w点x点y点z点
1u0(标记)251
2x0(标记)241(标记)2
3v0(标记)2(标记)41(标记)2
4y0(标记)2(标记)31(标记)2(标记)4

5.我们找到未被标记的点中dist最小的点:w

那么接下来标记点y(弹出v点),更新可以通过y实现更新的点,有u,x,y,z

在这里插入图片描述

更新一下dist表格的内容:(queue:z)

step出发点u点v点w点x点y点z点
1u0(标记)251
2x0(标记)241(标记)2
3v0(标记)2(标记)41(标记)2
4y0(标记)2(标记)31(标记)2(标记)4
5w0(标记)2(标记)3(标记)1(标记)2(标记)4

6.我们找到未被标记的点中dist最小的点:z

那么接下来标记点y(弹出v点),更新可以通过y实现更新的点,有w,y

在这里插入图片描述

更新一下dist表格的内容:(queue:)

step出发点u点v点w点x点y点z点
1u0(标记)251
2x0(标记)241(标记)2
3v0(标记)2(标记)41(标记)2
4y0(标记)2(标记)31(标记)2(标记)4
5w0(标记)2(标记)3(标记)1(标记)2(标记)4
6z0(标记)2(标记)3(标记)1(标记)2(标记)4(标记)

最终结果:

在这里插入图片描述

参考代码:朴素算法

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 7;
const int inf = 2147483647;
int mp[maxn >> 16][maxn >> 16], dist[maxn >> 16], n, m, s;
bool vis[maxn >> 16];
void dijkstra()
{
    for (int i = 1; i <= n; i++) dist[i] = inf;
    for (int i = 1; i <= n; i++) vis[i] = false;
    dist[s] = 0;
    for (int i = 1; i < n; i++) //重复n - 1次即可
    {
        int x = 0;
        for (int j = 1; j <= n; j++)
            if (!vis[j] && (x == 0 || dist[j] < dist[x]))
                x = j;
        if (x == 0) break;
        vis[x] = true;
        for (int y = 1; y <= n; y++)
            dist[y] = min(dist[y], dist[x] + mp[x][y]);
    }
}
int main()
{
    cin >> n >> m >> s;
    memset(mp, 0x3f3f3f, sizeof(mp));
    for (int i = 1; i <= m; i++)
    {
        int x, y, z;
        cin >> x >> y >> z;
        mp[x][y] = min(mp[x][y], z);
    }
    dijkstra();
    for (int i = 1; i <= n; i++)
        cout << dist[i] << " ";
    cout << endl;
    return 0;
}

参考代码:堆优化,涉及链式前向星

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 7;
const int inf = (1 << 31) - 1;
int n, m, s, tot = 1;
int head[maxn], ver[maxn], edge[maxn], nxt[maxn], dist[maxn];
bool vis[maxn];
struct Node 
{
    int dis, pos;
    bool operator < (const Node &x) const 
    {
        return dis > x.dis;
    }
};
priority_queue<Node> q;
void addE(int u, int v, int w)
{
    ver[++tot] = v;
    edge[tot] = w;
    nxt[tot] = head[u];
    head[u] = tot;
}
void dijkstra()
{
    for (int i = 1; i <= n; i++)
    {
        dist[i] = inf;
        vis[i] = false;
    }
    dist[s] = 0;
    q.push({0, s});
    while (q.size())
    {
        int x = q.top().pos;
        q.pop();
        if (vis[x])
            continue;
        vis[x] = true;
        for (int i = head[x]; i; i = nxt[i])
        {
            int y = ver[i], z = edge[i];
            if (dist[y] > dist[x] + z)
            {
                dist[y] = dist[x] + z;
                q.push({dist[y], y});
            }
        }
    }

}
int main()
{
    scanf("%d %d %d", &n, &m, &s);
    for (int i = 1; i <= m; i++)
    {
        int x, y, z;
        scanf("%d %d %d", &x, &y, &z);
        addE(x, y, z);
    }
    dijkstra();
    for (int i = 1; i <= n; i++)
        cout << dist[i] << " ";
    return 0;
}

参考来源:

  1. 《算法进阶指南(李煜东)》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TUStarry

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值