【OI学习笔记】线性代数-高斯消元法

本文详细介绍了线性代数中的高斯消元法,包括其基本原理、转换为上三角阵的过程、有无解的判定以及如何计算答案。通过实例展示了如何将线性方程组化为上三角阵,并解释了如何解决信息学竞赛中的线性方程问题。此外,还提及了在处理异或线性方程组时的注意事项和算法调整。
摘要由CSDN通过智能技术生成

宁可少些,但要好些,二分之一个证明等于 0
——德国数学家、物理学家 高斯

板块:线性代数-高斯消元法
难度:较难
前置知识点:矩阵的基本概念和三角阵、矩阵的初等变换
前置知识一览:

高斯消元法是线性代数中的重点知识,也是信息学奥赛中的考纲知识点,一般用于求解形如下所示的多元线性方程组。
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 3 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n ; \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+\cdots+a_{3n}x_n=b_2\\ \vdots\\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n; \end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a3nxn=b2an1x1+an2x2++annxn=bn;

高斯消元法的简单原理概述

概述: 高斯消元法的基本原理是把多元线性方程组的系数和等式右边记录为一个矩阵,并通过矩阵的变换使其成为上三角阵。最后再判定根据行数判断其有无解的情况,如果有解,还需要倒序回溯求解。

转换为上三角阵

  • 【模板】高斯消元解线性方程组
    以该方程组为例:
    { x 1 + 2 x 2 − x 3 = − 6 2 x 1 + x 2 − 3 x 3 = − 9 − x 1 − x 2 + 2 x 3 = 7 \begin{cases} x_1+2x^2-x_3=-6\\ 2x_1+x_2-3x_3=-9\\ -x_1-x_2+2x_3=7 \end{cases} x1+2x2x3=62x1+x23x3=9x1x2+2x3=7
    通过手动计算可以得到该方程组的解为 { x 1 = 1 x 2 = − 2 x 3 = 3 \begin{cases}x_1=1\\x_2=-2\\x_3=3\end{cases} x1=1x2=2x3=3.将其方程组左边的系数和等式右边转化为如下矩阵:
    ( 1 2 − 1 − 6 2 1 − 3 − 9 − 1 − 1 2 7 ) \begin{pmatrix} 1&2&-1&-6\\ 2&1&-3&-9\\ -1&-1&2&7 \end{pmatrix}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oier_Asad.Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值