【基础】数据结构笔记1 复杂度分析

复杂度分析重要性

复杂度分析是整个算法学习的精髓,只要掌握了它,数据结构和算法的内容基本上就掌握了一半。1
事后统计法的局限性:

  1. 测试结果非常依赖测试环境
  2. 测试结果受数据规模的影响很大

因此,需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法。这就是时间、空间复杂度分析方法。

注:王争书里的代码有点点错误,本文已勘误。

大 O 复杂度表示方法

代码 1

// 求1,2,...,n的和
// 每行旁边的注释,表明该行的执行次数
int cal(int n) {
	int sum = 0;  // 1
	int i = 1;  // 1
	for (; i <= n; ++i) { // n
		sum = sum + i;  //n
	}
	return sum;
}

假定每行执行时间都一样,时间复杂度:
f ( n ) = 2 + 2 n f(n)=2+2n f(n)=2+2n
T ( n ) = O ( f ( n ) ) = O ( n ) T(n)=O(f(n))=O(n) T(n)=O(f(n))=O(n)

代码 2

// 每行旁边的注释,表明该行的执行次数
int cal(int n) {
	int sum = 0; // 1
	int i = 1; // 1
	int j = 1; // 1
	for (; i <= n; ++i) { // n
		j = 1; // n
		for (; j <= n; ++j) { // n*n
		sum = sum + i * j; // n*n
		}
	}
	return sum;
}

时间复杂度:
f ( n ) = 2 n 2 + 2 n + 3 f(n)=2n^{2}+2n+3 f(n)=2n2+2n+3
T ( n ) = O ( f ( n ) ) = O ( n 2 ) T(n)=O(f(n))=O(n^{2}) T(n)=O(f(n))=O(n2)

时间复杂度分析

方法

  1. 只关注执行次数最多的一段代码
  2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
    T 1 ( n ) = O ( f ( n ) ) T_1(n)=O(f(n)) T1(n)=O(f(n)) T 2 ( n ) = O ( g ( n ) ) T_2(n)=O(g(n)) T2(n)=O(g(n))
    T ( n ) = T 1 ( n ) + T 2 ( n ) = m a x ( O ( f ( n ) ) , O ( g ( n ) ) ) = O ( m a x ( f ( n ) , g ( n ) ) ) T(n)=T_1(n)+T_2(n)=max(O(f(n)),O(g(n)))=O(max(f(n),g(n))) T(n)=T1(n)+T2(n)=max(O(f(n)),O(g(n)))=O(max(f(n),g(n)))
  3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
    T 1 ( n ) = O ( f ( n ) ) T_1(n)=O(f(n)) T1(n)=O(f(n)) T 2 ( n ) = O ( g ( n ) ) T_2(n)=O(g(n)) T2(n)=O(g(n))
    T ( n ) = T 1 ( n ) ∗ T 2 ( n ) = O ( f ( n ) ) ∗ O ( g ( n ) ) = O ( f ( n ) ∗ g ( n ) ) T(n)=T_1(n)*T_2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)) T(n)=T1(n)T2(n)=O(f(n))O(g(n))=O(f(n)g(n))

要点

复杂度分析关键在于熟能生巧,不需要死记硬背。所以需要多看案例,多分析,做到无招胜有招。

代码 1:加法法则

加法法则:总复杂度等于量级最大的那段代码的复杂度

// 每行旁边的注释,表明该行的执行次数
int cal(int n) {
	int sum_1 = 0;
	int p = 1;
	for (; p < 100; ++p) {
		sum_1 = sum_1 + p;  //100
	}
	
	int sum_2 = 0;
	int q = 1;
	for (; q < n; ++q) {
		sum_2 = sum_2 + q;  //n
	}
	
	int sum_3 = 0;
	int i = 1;
	int j = 1;
	for (; i <= n; ++i) {
		j = 1;
		for (; j <= n; ++j) {
		sum_3 = sum_3 + i * j;  //n^2
		}
	}
	
	return sum_1 + sum_2 + sum_3;
}

时间复杂度:
f ( n ) = n 2 + n + 100 f(n)=n^{2}+n+100 f(n)=n2+n+100
T ( n ) = O ( f ( n ) ) = O ( n 2 ) T(n)=O(f(n))=O(n^{2}) T(n)=O(f(n))=O(n2)

代码 2:乘法法则

乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

// 每行旁边的注释,表明该行的执行次数
int cal(int n) {
	int ret = 0;
	int i = 1;
	for (; i < n; ++i) {
		ret = ret + f(i);  //(外层)n
	}
	return sum;
}
int f(int n) {
	int sum = 0;
	int i = 1;
	for (; i < n; ++i) {
		sum = sum + i; // (内层)n
	}
}

时间复杂度:
f ( n ) = n 2 f(n)=n^{2} f(n)=n2
T ( n ) = O ( f ( n ) ) = O ( n 2 ) T(n)=O(f(n))=O(n^{2}) T(n)=O(f(n))=O(n2)

几种常见的时间复杂度分析

O (1)

只要不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是 O (1)。

// 每行旁边的注释,表明该行的执行次数
int i = 8; // 1
int j = 6; // 1
int sum = i + j; // 1

时间复杂度:
f ( n ) = 3 f(n)=3 f(n)=3
T ( n ) = O ( f ( n ) ) = O ( 1 ) T(n)=O(f(n))=O(1) T(n)=O(f(n))=O(1)

O (logn),O (nlogn)

对数阶时间复杂度非常常见,也最难分析。

// 每行旁边的注释,表明该行的执行次数
int i = 1; // 1
while (i <= n) {
	i = i * 2; // 2^f(n)=n
}

时间复杂度:
2 f ( n ) = n 2^{f(n)}=n 2f(n)=n,则 f ( n ) = log ⁡ 2 n f(n)=\log_2n f(n)=log2n
T ( n ) = O ( f ( n ) ) = O ( log ⁡ n ) T(n)=O(f(n))=O(\log n) T(n)=O(f(n))=O(logn)

将 2 改为 3,

// 每行旁边的注释,表明该行的执行次数
int i = 1; // 1
while (i <= n) {
	i = i * 3; // 3^f(n)=n
}

时间复杂度:
3 f ( n ) = n 3^{f(n)}=n 3f(n)=n,则 f ( n ) = log ⁡ 3 n f(n)=\log_3n f(n)=log3n
T ( n ) = O ( f ( n ) ) = O ( log ⁡ n ) T(n)=O(f(n))=O(\log n) T(n)=O(f(n))=O(logn)

注意: log ⁡ 3 n = log ⁡ 3 2 ∗ log ⁡ 2 n \log_3n=\log_32*\log_2n log3n=log32log2n

O (m+n),O (m * n)

代码的复杂度由两个数据的规模所决定。
加法法则失效,乘法法则不变。

// 每行旁边的注释,表明该行的执行次数
int cal(int m, int n) {
	int sum_1 = 0;
	int i = 1;
	for (; i < m; ++i) {
		sum_1 = sum_1 + i; // m
	}
	
	int sum_2 = 0;
	int j = 1;
	for (; j < m; ++j) {
		sum_2 = sum_2 + j; // n
	}
	return sum_1 + sum_2;
}

时间复杂度:
f ( n ) = m + n f(n)=m+n f(n)=m+n
T ( n ) = O ( f ( n ) ) = O ( m + n ) T(n)=O(f(n))=O(m+n) T(n)=O(f(n))=O(m+n)

空间复杂度分析

渐近空间复杂度,表示算法的存储空间与数据规模之间的增长关系。

常见的空间复杂度是 O ( 1 ) O (1) O(1) O ( n ) O (n) O(n) O ( n 2 ) O (n^2) O(n2),比较简单

代码示例

// 每行旁边的注释,表明该行申请的存储空间个数
void print (int n) {
	int i = 0; // 1
	int[] a = new int [n]; // n
	for (i; i < n; ++i) {
		a[i] = i * i;
	}

	for (i = n-1; i>= 0; --i) {
		print out a[i];
	}
}

空间复杂度:
f ( n ) = n + 1 f(n)=n+1 f(n)=n+1
S ( n ) = O ( f ( n ) ) = O ( n ) S(n)=O(f(n))=O(n) S(n)=O(f(n))=O(n)

复杂度的阶数比较

1 < log ⁡ n < n < n log ⁡ n < n 2 < 2 n < n ! < n n 1<\log n<n<n\log n<n^2<2^n<n!<n^n 1<logn<n<nlogn<n2<2n<n!<nn

在这里插入图片描述

最好、最坏情况时间复杂度

代码 1

// 实现功能:在一个长度为n的数组中,查找变量x出现的位置。找到返回位置,未找到返回-1
// n表示数组array的长度
// 每行旁边的注释,表明该行的执行次数
int find(int[] array, int n, int x) {
	int i = 0;
	int pos = -1;
	for (; i < n; ++i) {
		if (array[i] == x) pos = i; // n
	}
	return pos;
}

时间复杂度:
f ( n ) = n f(n)=n f(n)=n
T ( n ) = O ( f ( n ) ) = O ( n ) T(n)=O(f(n))=O(n) T(n)=O(f(n))=O(n)

代码 2

将代码 1 优化,使得找到 x 位置时,提前结束循环。

// 实现功能:在一个长度为n的数组中,查找变量x出现的位置。找到返回位置,未找到返回-1
// n表示数组array的长度
// 每行旁边的注释,表明该行的执行次数
int find(int[] array, int n, int x) {
	int i = 0;
	int pos = -1;
	for (; i < n; ++i) {
		if (array[i] == x) {
			pos = i; // 1或2...或n
			break;
		}
	}
	return pos;
}

当 x 在数组中时,循环次数1 或 2… 或 n,因为退出后不再循环,但在什么时候退出,取决于 x 在数组中的位置是 0 或 1… 或 n-1。
当 x 不在数组中时,会循环 n 次而不会提前停止。

最好时间复杂度:
f ( n ) = 1 f(n)=1 f(n)=1
T ( n ) = O ( f ( n ) ) = O ( 1 ) T(n)=O(f(n))=O(1) T(n)=O(f(n))=O(1)

最坏时间复杂度 :
f ( n ) = n f(n)=n f(n)=n
T ( n ) = O ( f ( n ) ) = O ( n ) T(n)=O(f(n))=O(n) T(n)=O(f(n))=O(n)

平均时间复杂度

代码 1

// 实现功能:在一个长度为n的数组中,查找变量x出现的位置。找到返回位置,未找到返回-1
// n表示数组array的长度
// 每行旁边的注释,表明该行的执行次数
int find(int[] array, int n, int x) {
	int i = 0;
	int pos = -1;
	for (; i < n; ++i) {
		if (array[i] == x) {
			pos = i; // 1或2...或n
			break;
		}
	}
	return pos;
}

平均时间复杂度:

  1. 假设每种情况出现的概率相同,则
    f ( n ) = 1 + 2 + . . + n + n n + 1 = n ( n + 3 ) 2 ( n + 1 ) f(n)=\frac{1+2+..+n+n}{n+1}=\frac{n(n+3)}{2(n+1)} f(n)=n+11+2+..+n+n=2(n+1)n(n+3)
    T ( n ) = O ( f ( n ) ) = O ( n ) T(n)=O(f(n))=O(n) T(n)=O(f(n))=O(n)

  2. 假设 x 在数组中的概率为 1 2 \frac{1}{2} 21,则
    f ( n ) = 1 × 1 2 n + 2 × 1 2 n + . . . n × 1 2 n + n × 1 2 = 3 n + 1 4 f(n)=1×\frac{1}{2n}+2×\frac{1}{2n}+...n×\frac{1}{2n}+n×\frac{1}{2}=\frac{3n+1}{4} f(n)=1×2n1+2×2n1+...n×2n1+n×21=43n+1
    T ( n ) = O ( f ( n ) ) = O ( n ) T(n)=O(f(n))=O(n) T(n)=O(f(n))=O(n)


  1. 数据结构与算法之美,王争 ↩︎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值