关于Roberts算子,Sobel算子,Prewitt算子的简单原理计算,附python代码

本文详细介绍了图像处理中常用的Roberts, Sobel, Prewitt边缘检测算子的原理,并提供了使用Python和numpy库实现的代码示例,帮助读者理解并应用这些算子进行图像边缘检测。" 119957496,108241,Seaborn类别图详解:从strip到barplot,"['python', '数据分析', 'Seaborn', '可视化']
摘要由CSDN通过智能技术生成
仅做参考,有错谅解
import numpy as np
d = np.array([[90, 90, 5, 5, 50], [90, 90, 5, 5, 5], [60, 60, 60, 5, 5], [80, 80, 60, 50, 50], [80, 80, 60, 50, 50]],dtype=int)

def mySobel(myArray, x, y):
    Dx = (myArray[x + 1, y - 1] - myArray[x - 1, y - 1]) + 2 * (myArray[x + 1, y] - myArray[x - 1, y]) + (
                myArray[x + 1, y + 1] - myArray[x - 1, y + 1])
    Dy = (myArray[x - 1, y + 1] - myArray[x - 1, y - 1]) + 2 * (myArray[x, y + 1] - myArray[x, y - 1]) + (
                myArray[x + 1, y + 1] - myArray[x + 1, y - 1])
    r = abs(Dx)+abs(Dy)
    print(Dx,Dy)
    return r
def myroderts(myArray,x,y):
    Dx = (myArray[x+1, y+1] - myArray[x, y])
    Dy = (myArray[x+1, y] - myArray[x, y+1])
    r = abs(Dx) + abs(Dy)
    print(Dx, Dy)
    return r

def myprewitt(myArray,x,y):
    Dx = (myArray[x-1, y+1] + myArray[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值