自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 prefetch相关论文阅读笔记

prefetch相关论文阅读笔记论文1. Revisiting Data Prefetching for Database Systems with Machine Learning Techniques(2021)本文认为访问模式(access pattern)只有三种:(1) locality within a transaction, (2) random access by transactions and (3) sequential accesses by long queries。以本文的

2021-10-12 22:47:22 418 1

原创 生成对抗网络

Generative Adversarial Network and its Variants————只是一些关于直观理解的小小反思阅读完提出GAN的那篇文章。该文章提出了GAN的这种学习模式,其目标是用生成模型去刻画一组在域X上的数据的分布。做法是同时训练一个生成模型G(Generator)和一个辨别模型D(Discriminator),G是一个从隐藏变量域Z到目标变量域X的映射,而D则负责辨别某一个X中的元素是G映射得来的还是来自数据集本身。文章提出了损失函数的设计:D要尽量让来自真实数据集的数据被标

2021-09-22 09:12:49 120

原创 CACHEUS中的SR-LFU和CR-LFU与2Q、ARC对比

CACHEUS中的SR-LRU和CR-LFU2QSimplified VersionFull VersionARCDBL(2c)&Π(c)FRC&ARCSR-LRU&CR-LFUSR-LRU2QSimplified Version将缓存分成A1和Am两部分;每当新访问q:如果命中:如果q在A1中被命中,那么从A1中移动到Am的MRU位置;如果q在Am中被命中,则移动到Am的MRU位置;如果miss:如果A1的大小超过了给定阈值,则淘汰A1的尾部元素,新元素进入A1头

2021-07-15 10:43:59 548

原创 ARC算法分析与实现

ARC算法分析与实现ARC算法是2003年提出的缓存替换算法,是众多针对LRU算法的改良算法之一。本文仅从模拟实现角度分析ARC算法,可以说就是解释ARC算法的内容,而不会将重点放在ARC算法的原理和解释其优越性上,同时代码实现也仅可用于模拟,不是针对具体应用。FRCARC的结构是两个LRU队列,我们称其为 L1L1L1和L2L2L2,L1L1L1存储首次被访问的页,而L2L2L2存储被访问过两次及以上的页。当然这里被访问两次及以上是指在被从这两个LRU队列中淘汰之前再次被访问,因为从两个LRU队

2021-03-04 20:09:10 3707

原创 pytorch实现lstm分类模型

教程原文在这里Tutorial,这篇文章中用LSTM实现了一个简单的词类标注模型。下面是一些具体的解析:# Author: Robert Guthrieimport torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimtorch.manual_seed(1)# 引用库函数我们首先了解如何初始化一个nn.LSTM实例, 以及它的输入输出。初始化nn.LSTM实例, 可以设定

2020-12-03 18:12:03 17825

原创 B+树的python实现

B+树的python实现本代码来自极客学院网站死里逃生2018年发表的blog关于 B+tree (附 python 模拟代码)。该代码实现了B+树的插入、删除、范围查找,功能完善,但也存在诸多问题。本文在原代码基础上对其错误进行了修正,更便于需要者使用。主要贡献将python3不支持的语法修改成python3支持的语法,主要是__cmp__修改成__lt__,gt解决查找算法bug:当范围查询上界不存在时,原代码返回的查询结果会多出或者缺少元素。点查询则不受影响。为B+树类添加了Size成员,

2020-09-28 17:42:00 3408 3

原创 组合恒等式证明中几个常用的变量转移技巧

组合恒等式证明中几个常用变量转移技巧本文介绍的技巧来自Ronald L.Graham 等的《具体数学》edition 2.在证明组合部分和相关恒等式时,求和变量所在的位置对于计算影响至关重要,具体情况可以分为两类:组合数的分子分母是否随着求和变量变化当出现组合数乘积求和时,哪些项含有求和变量我们的主要目标是让求和形式尽量与我们已知的组合恒等式建立联系。例如对于情形1,我们可能会喜欢看到这样的形式:∑k(km)(1)\sum_{k}\binom{k}{m}\tag{1}k∑​(mk​)(1)或

2020-07-08 20:20:59 384

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除