组合恒等式证明中几个常用的变量转移技巧

组合恒等式证明中几个常用变量转移技巧

本文介绍的技巧来自Ronald L.Graham 等的《具体数学》edition 2.

在证明组合部分和相关恒等式时,求和变量所在的位置对于计算影响至关重要,具体情况可以分为两类:

  1. 组合数的分子分母是否随着求和变量变化
  2. 当出现组合数乘积求和时,哪些项含有求和变量

我们的主要目标是让求和形式尽量与我们已知的组合恒等式建立联系。例如对于情形1,我们可能会喜欢看到这样的形式:
∑ k ( k m ) (1) \sum_{k}\binom{k}{m}\tag{1} k(mk)(1)或者
∑ k ( r + k k ) (2) \sum_{k}\binom{r + k}{k}\tag{2} k(kr+k)(2)因为我们有加法公式 ( r k ) = ( r − 1 k ) + ( r − 1 k − 1 ) \binom{r}{k}=\binom{r-1}{k}+\binom{r-1}{k-1} (kr)=(kr1)+(k1r1)适用于对分母不变的求和可以连锁合并。 而
∑ k = 0 m ( r k ) \sum_{k=0}^m\binom{r}{k} k=0m(kr)对于大多数 m m m就没有闭形式的求和;另一方面,对于乘积的求和,我们常(接下来要)利用的恒等式是:
∑ k ( r m + k ) ( s n − k ) = ( r + s m + n ) (3) \sum_{k}\binom{r}{m+k}\binom{s}{n-k}=\binom{r+s}{m+n}\tag{3} k(m+kr)(nks)=(m+nr+s)(3)
由于上面每一项都只含两个组合数的乘积,当我们应用时我们希望含有求和变量的组合数因子尽可能的少。

当我们碰到棘手的情况时,这里有两个有用的转移求和变量位置的技巧。

1. 反转公式

反转公式本身是 ( r k ) = ( − 1 ) k ( k − r − 1 k ) (4) \binom{r}{k}=(-1)^{k}\binom{k-r-1}{k}\tag{4} (kr)=(1)k(kkr1)(4) k k k为任意整数,可以看到反转公式可以将分母变量引入分子,但是不能改变分子变量,并且反转公式会引入 ( − 1 ) n (-1)^n (1)n,会让求和失去 ( 1 ) (1) (1)的形式。所以我们常用两次反转公式: ( m + n n ) = ( − 1 ) n ( − m − 1 n ) \binom{m+n}{n}=(-1)^{n}\binom{-m-1}{n} (nm+n)=(1)n(nm1)另一方面,如果我们限定 m m m n ≥ 0 n\geq0 n0,那么 ( m + n n ) = ( m + n m ) = ( − 1 ) m ( − n − 1 m ) \binom{m+n}{n}=\binom{m+n}{m}\\=(-1)^{m}\binom{-n-1}{m} (nm+n)=(mm+n)=(1)m(mn1)因此我们得到 ( − 1 ) n ( − m − 1 n ) = ( − 1 ) m ( − n − 1 m ) (-1)^{n}\binom{-m-1}{n}=(-1)^{m}\binom{-n-1}{m} (1)n(nm1)=(1)m(mn1)这让我们可以在上下标之间切换变量,但是付出的代价是我们引入了 ( − 1 ) n − m (-1)^{n-m} (1)nm,并且 m , n ≥ 0 m,n\geq0 m,n0

2. ( r n ) ( n k ) = ( r k ) ( r − k n − k ) \binom{r}{n}\binom{n}{k}=\binom{r}{k}\binom{r-k}{n-k} (nr)(kn)=(kr)(nkrk)

从组合意义上可以很快记住上面的公式:左右两边都是把 r r r个球分成 k , n − k , r − n k,n-k,r-n k,nk,rn三组的方法数,同时这个公式左边 n n n同时出现在一个组合数的分子和另一个的分母,所以下面我们称之为约分公式。这个公式在处理组合数的乘积的求和时很有意义,因为它可以有效的消除求和变量比如左边 n n n出现在两个组合数的分子和分母,而右边则只出现在一个组合数的分母,左边 k , r k,r k,r只出现在一个组合数中而右边出现在两个组合数中,这样的转换可以让我们把乘积的求和转化成单项求和。比如下面这个问题: ∑ k ( m − r + s k ) ( n + r − s n − k ) ( r + k m + n ) = ( r m ) ( s n ) \sum_{k}\binom{m-r+s}{k}\binom{n+r-s}{n-k}\binom{r+k}{m+n}=\binom{r}{m}\binom{s}{n} k(kmr+s)(nkn+rs)(m+nr+k)=(mr)(ns)首先我们将 ( r + k m + n ) \binom{r+k}{m+n} (m+nr+k)拆成 ∑ j ( r m + n − j ) ( k j ) \sum_{j}\binom{r}{m+n-j}\binom{k}{j} j(m+njr)(jk),我们暂时好像让式子变得更复杂了,但是注意到我们现在有 ( m − r + s k ) ( k j ) \binom{m-r+s}{\bm{k}}\binom{\bm{k}}{j} (kmr+s)(jk),利用约分公式,注意这里的k相当于其中的n: ∑ j ( r m + n − j ) ∑ k ( n + r − s n − k ) ( m − r + s k ) ( k j ) = ∑ j ( r m + n − j ) ∑ k ( n + r − s n − k ) ( m − r + s j ) ( m − r + s − j k − j ) \sum_{j}\binom{r}{m+n-j}\sum_{k}\binom{n+r-s}{n-k}\binom{m-r+s}{k}\binom{k}{j}\\=\sum_{j}\binom{r}{m+n-j}\sum_{k}\binom{n+r-s}{n-k}\binom{m-r+s}{j}\binom{m-r+s-j}{k-j} j(m+njr)k(nkn+rs)(kmr+s)(jk)=j(m+njr)k(nkn+rs)(jmr+s)(kjmr+sj)这就立马让三项含有k的求和变成两项含有k的求和,并且我们可以应用 ( 3 ) (3) (3) = ∑ j ( r m + n − j ) ( m − r + s j ) ∑ k ( n + r − s n − k ) ( m − r + s − j k − j ) = ∑ j ( r m + n − j ) ( m − r + s j ) ( m + n − j n − j ) =\sum_{j}\binom{r}{m+n-j}\binom{m-r+s}{j}\sum_{k}\binom{n+r-s}{n-k}\binom{m-r+s-j}{k-j}\\=\sum_{j}\binom{r}{m+n-j}\binom{m-r+s}{j}\binom{m+n-j}{n-j} =j(m+njr)(jmr+s)k(nkn+rs)(kjmr+sj)=j(m+njr)(jmr+s)(njm+nj)我们又得到了三项都含 j j j的和式,但是一切并不是徒劳的,因为显然我们可以再次对 ( r m + n − j ) ( m + n − j n − j ) \binom{r}{m+n-j}\binom{m+n-j}{n-j} (m+njr)(njm+nj)运用约分公式,但是注意这里我们想要减少j,如果把 n − j n-j nj视作公式中的 k k k,显然从左到右 k k k是增多的,所以我们要利用对称性质 ( m + n − j n − j ) = ( m + n − j m ) \binom{m+n-j}{n-j}=\binom{m+n-j}{m} (njm+nj)=(mm+nj),注意使用对称性质时总是要检查分子是否符合非负条件,我们的 j j j是求和变量,所以不论 m , n m,n m,n的符号如何,某些项 m + n − j m+n-j m+nj一定是正的,而 m + n − j < 0 m+n-j<0 m+nj<0的项由于 ( r m + n − j ) = 0 \binom{r}{m+n-j}=0 (m+njr)=0而消失。对于 m + n − j ≥ 0 m+n-j\geq0 m+nj0的项,我们可以用对称性质: ∑ j : m + n − j ≥ 0 ( r m + n − j ) ( m + n − j m ) ( m − r + s j ) = ∑ j ( r m ) ( r − m n − j ) ( m − r + s j ) = ( r m ) ( s n ) \sum_{j:m+n-j\geq0}\binom{r}{m+n-j}\binom{m+n-j}{m}\binom{m-r+s}{j}\\= \sum_{j}\binom{r}{m}\binom{r-m}{n-j}\binom{m-r+s}{j}\\=\binom{r}{m}\binom{s}{n} jm+nj0(m+njr)(mm+nj)(jmr+s)=j(mr)(njrm)(jmr+s)=(mr)(ns)证毕。

这道题充分利用了等式 ( r n ) ( n k ) = ( r k ) ( r − k n − k ) \binom{r}{n}\binom{n}{k}=\binom{r}{k}\binom{r-k}{n-k} (nr)(kn)=(kr)(nkrk)来转移、消减求和式中的求和变量,其中引入变量 j j j可能比较难以想到,我们可以理解为凑可以“约分”的形式,那么如果我们的拆分是 ( r + k m + n ) = ∑ j ( r m + j ) ( k n − j ) \binom{r+k}{m+n}=\sum_{j}\binom{r}{m+j}\binom{k}{n-j} (m+nr+k)=j(m+jr)(njk)是否也能达到同样的效果呢?

答案是,是的,并且过程与上面的完全一致,也需要用到对称性质等。这里对称性质可以很好的避免求和变量出现在增多位置,注意与约分公式结合使用。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值