一、题目要求
1. 能够自定义输入类别个数。
2. 能够自定义输入类别名称,如鼠标、铅笔、书本,以及实时显示每类加载图片数。
3. 一个具有保存功能的html和一个能够加载模型的html(保存和加载功能)。
4. 打开能够加载模型的html后可直接进行识别。
二、原理简述
传统的机器学习或数据挖掘只有在训练集数据和测试集数据都来自同一个feature space(特征空间)和统一分布的时候才运行的比较好,这意味着每一次换了数据都要重新训练模型,太麻烦了。比如:从数据类型/内容上看,对于新的数据集,获取新的训练数据很贵也很难。从时间维度上看,有些数据集很容易过期,即不同时期的数据分布也会不同。
深度迁移学习使用一个已经训练好的模型当作特征提取工具,只把最后一层重新初始化然后训练。深度迁移学习为传统迁移学习与深度神经网络相结合的一种新兴研究方向,以其对比非深度方法还有两个优势:自动化地提取更具现力的特征,以及满足了实际应用中的端到端 (End-to-End) 需求。
传统的深度学习:大量数