用Python学《微积分B》(多元微分学的几何应用)


  多元函数微分学的几何应用主要是讲述空间向量与微分学的融合,包括:空间曲线的切线和空间曲面的切平面。如果将本文和之前的“空间向量”一文结合起来看,你会发现多元函数微分学与空间向量结合后的神奇。


一、空间曲线的切线


1,空间曲线的参数方程
  在“空间向量”一文中提到:空间曲线可以看作是两个空间曲面的交线,可以用一个方程组来描述

{F(x,y,z)=0G(x,y,z)=0

  也可以用参数方程来描述
x=x(t)y=y(t)z=z(t)

  细思一下,用方程组描述表示“交线”,这个比较容易理解,那么为什么能用一元的参数方程组来描述呢?
  事实上,可以用普通方程通过如下方式推导出参数方程
  先假设存在 x=x(t) ,代入那个普通方程组,可以用消元法,分别解出
{y=y(t)z=z(t)

2,参数方程的切线
  一元函数的导数在几何上表示平面曲线在某点的切线的斜率,反过来推广,空间曲线的切线斜率也可以用导数来表示。现在来看空间曲线的切线,它同样可以表示为割线的极限,而割线则表示两点间的连线,很容易用向量来表示,如下
τ⃗ =limMM0MM0=limtt0(x(t)x(t0)tt0,y(t)y(t0)tt0,z(t)z(t0)tt0)

  观察上式,在各个分量上等于参数方程的导数,即
τ⃗ =(x(t),y(t),z(t))

  这就是空间曲线的切线的斜率(向量)。有了斜率,切线的方程可以用“点斜式”(点向式)表示为
x(t)x(t0)x(t)=y(t)y(t0)y(t)=z(t)z(t0)z(t)

  如果令上式等于 λ ,就可以写成切线的参数方程。此外,知道了切线方程,通过平面“点法式”,也可以构造出它的法平面方程。
3,空间曲线的一般方程
  上面是从空间曲线的参数方程来推导它的切线方程,如果已知的是空间曲线的一般方程呢?要怎样才能求出它的切线方程?
  答案是:隐函数方程组求导。具体如下
  对方程组中各个方程两边分别对 x 求导
{F(x,y,z)=0G(x,y,z)=0

  解出 dydx,dzdx
  那么,切线的斜率向量为
(1,dydx,dzdx)



二、空间曲面的切平面


1,空间曲面与空间直线
1)空间曲面的方程

F(x,y,z)=0

  上式是隐函数形式,下面再给出一般形式
z=f(x,y)

2)切平面
  二元函数 z=f(x,y) 的偏导数 fx 相当于空间曲面 F(x,y,z)=0 与平面 y=y0 的交线的斜率,这个交线 lxz 既位于空间曲面 F(x,y,z)=0 上,也位于平面 y=y0 上。类似地,也可以得到另一条交线 lyz ,它与 lxz 相交与点 (x0,y0,z0) 。很显然,两条相交的空间直线(注意不是空间曲线)必定位于同一个平面。
  换句话说,空间直线 lxz lyz 确定的平面就是空间曲面 F(x,y,z)=0 的切平面
  这个平面的法向量为
n⃗ =lxz×lyz

2,法向量与梯度
  仔细想想,上面那个法向量既是切平面的法向量,也是空间曲面在点 M0(x0,y0,z0) 的梯度向量。故有
n⃗ =(Fx,Fy,Fz)

  根据平面“点法式”方程可得切平面的方程为
Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0

  上面是三维梯度,事实上,也可以换成平面梯度来理解
Δz=fxΔx+fyΔy

  上式表示沿梯度向量的变化关系,变形一下
zz0=fx(xx0)+fy(yy0)

  这事实上就是切平面的方程,至此,大家可以体会一下切平面的意义。
  再变换一下
fx(x0,y0)(xx0)+fy(x0,y0)(yy0)(zz0)=0

  逆向运用“点法式”,可得
n⃗ =(fx,fy,1)

注:貌似得到了两个法向量,但实际上单位化后它们是相等的。

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页