用Python学《微积分B》(微分中值定理与洛必达法则)

    本文将“微分中值定理”和“洛必达法则”(L'Hopital's Rule)两节的课后习题放到一块讨论。其中“微分中值定理”强调的是对概念,特别是“开区间可导,闭区间连续”的理解,习题虽少,但吃透不易;而“洛必达法则”将求函数的极限转变为求导数的极限,实现的是一种“降维”计算方法,(看到“降维”这个词,你就知道它的威力有多大了),但是现在有了python,这种苦逼计算就交给计算机了,至于它用不用“洛必达法则”,我就不关心了,我关心的是:“洛必达法则”在应用的时候如何对待求解不定式的分类和什么时候不适合用洛必达法则。

一、微分中值定理

    本节包含了4个定理和4个推论,即:Fermat定理、Rolle定理、Lagrange中值定理、Cauchy中值定理,以及Lagrange中值定理的4个推论。

    关于微分中值定理,最重要的是理解“开区间可导,闭区间连续”这一点。关于这点,知乎上有专门的讨论,链接是:https://www.zhihu.com/question/37423489

    简单来说,闭区间可导就是耍流氓。举例证明:

    f(x) = |x|,在区间[-1, 0]和区间[0, 1]都可导,那么它在 x=0 这一点可导吗?

    很显然:,它在 x = 0 不可导。如图:

                     

    另一方面,函数连续反映的是函数在某点的极限与函数值的关系。闭区间连续与开区间连续是有本质区别的,不仅仅是两个端点的问题。这个在介绍“一致连续”的时候讲过了,闭区间连续,则一定“一致连续”。还是举例:

    f(x) = ln(x)在 (0, 1)开区间连续

                  


    一般来说,没有特殊注明,“微分中值定理”就指的是“Lagrange中值定理”,但也不要忽视“Cauchy中值定理”的特殊作用。如果说,微分中值定理建立了“函数与导数”之间的联系,那么,“Cauchy中值定理”建立的就是“函数之比与导数之比”之间的联系,它在证明“Taylor公式的Lagrange余项”时就用到了。

     

1,如果函数f(x)和g(x)可导,那么以下说法中正确的是:

A. 若f(x)在区间[a, b]上单调增加,则f'(x) > 0 在[a, b]上恒成立

B. 若f'(x)在区间[a, b]上恒为0,则f(x) 在[a, b]上恒为常数

C. 若在区间[a, b]恒有f'(x)=g'(x),则 f(x)=g(x) 在[a, b]上恒成立

D. 若存在使得,则存在(a, b)使得

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值