学习:周志华老师招收研究生要求

南京大学周志华教授发布对于潜在研究生的要求与期待,包括研究兴趣、职业规划及经济状况等考量因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习:周志华老师招收研究生要求

转发博客,学习目标。

周志华,男,1973年11月生。分别于1996年6月、1998年6月和2000年12月于 南京大学计算机科学与技术系 获学士、硕士和博士学位。2001年1月起留校任教。2002年3月破格晋升副教授,2003年11月被聘任为教授,2004年4月获博士生导师资格。2003年获 国家杰出青年科学基金,2006年入选教育部长江学者特聘教授。现任人工智能教研室主任、机器学习与数据挖掘 (LAMDA) 研究组负责人。
以下是周志华写的For Potential Students:

 

For Potential Students

如果您有兴趣到南京大学计算机科学与技术系攻读学位,并且愿意选择我作为您攻读学位期间的导师,与我一起从事研究工作,那么请耐心阅读以下注意事项:

  1. 在和我联系之前,请先认真考虑以下问题:
    1. 您是否对我目前的研究方向(可以参考我最近的论文 以及 我的研究组主页)感兴趣?究工作可能是充满挫折的,如果没有高度的兴趣,可能会很痛苦。
    2. 您对自己的未来如何打算?我所做的都是比较前沿的研究性课题,关注的并不是那些已经成熟得可以进入产业界(或马上可以进入产业界)的技术。基础性、前沿性的研究工作,对任何一个国家和社会都是不可或缺的,但任何一个国家和社会都不需要有大量的人从事这方面的工作。我指导的学生在毕业后到高校、研究所或大公司的研究机构任职可能比较合适。因此,如果您期望将来从事产业方面的工作(例如到一般公司任职),在我指导下攻读学位的经历可能对您不会有多少帮助。
    3. 您是否有较大的经济负担?由于我做的都是研究性而非工程课题,因此我所能提供的研究津贴是很有限的,可能您所有的收入只够维持您自己的基本生活。一边要为生计发愁,一边要全身心地投入研究工作,对常人来说基本上是不可能的。因此,如果您有较大的经济负担,进入我的研究组可能不是一个好的选择。
  1. 由于精力和指导能力有限,我无法招收太多的学生。一般每年招收博士生1-2名、硕士生2-3名。因为每年跟我联系的学生远远超过我所能接受的数字,所以您可能要面临比较严峻的竞争(有传言说我只招收保送生,这绝对是谣传,我所认为有研究潜质的学生,未必一定能在目前的一般评价体系下有优异的表现)。根据目前的情况,建议您至少提前一年与我联系。例如,如果您打算在2008年秋季入学,那么您大概应该在2007年5月(具体时间请见这里)开始申请。
  2. 如果您准备申请硕博连读,则相对只申请硕士生而言,我可能要对您进行更深入一些的考查。一般来说,我建议您先申请硕士生,如果您在和我一起从事一段时间(一到两年)的研究工作后,仍然希望由我作为您攻读博士学位的导师,那么您可以再提交博士生的申请。在我指导下攻读博士学位通常意味着您希望以学术作为职业生涯,我建议您在对学术生涯以及和我一起从事研究工作的情况有一定了解之后,再做这样重大的决定。
  3. 在我选择未来的硕士生时,优秀的本科成绩(特别是数学类课程的成绩)会有较好的影响。一般来说,您最好具有较好的数学基础、较好的编程能力(MATLAB、JAVA、C/C++)、较好的英文水平(能够不太困难地阅读专业文献)。但上述要求并不是绝对的,实际上,最重要的是我觉得您有很好的研究潜质(遗憾的是,我很难对此给出具体的描述)。
  4. 在我选择未来的博士生时,研究背景和可塑性将有决定性的影响。一般来说,您最好已经深入参与过研究工作、对领域有较清楚的认识、具有良好的发表记录、能够较流畅地撰写英文论文、能够较自如地做研究报告。但上述要求并不是绝对的,尤其是您以往的研究领域未必要与我相同,但无论如何,您最好对在我指导下可能从事的研究工作有较清楚的认识。
  5. 选择过程通常如下进行:
    1. 您通过Email传送给我:简历 + 研究动机说明,请在简历中清楚地写明您的个人情况、学习经历(申请硕士生需提供扫描的本科成绩单)、工作经历、科研经历、发表论文情况以及您认为有助于增进我对您的了解的其他情况;在研究动机说明中,请用一页A4纸的篇幅描述您的研究动机。(请注意:在通过Email发送您的简历和研究动机说明前,请先征得我的同意;您传送的最好是中文版PDF文件)
    2. 如果您提供的材料使我产生了兴趣,我将会通过Email和您确定一个面谈时间(所有最终被接纳的学生都需要经历这一步)。目前的面谈过程大概是这样
      • 如果您是申请硕士生,那么
        1. 在面谈前一周,我将发送给您一篇文献供阅读
        2. 面谈时,我们将先进行大约15分钟的交谈,以便进一步了解情况;
        3. 然后,您将做30-40分钟的报告(请准备PowerPoint投影片),听众是我本人以及我的研究组目前的成员。前10分钟请介绍您自己的情况,后面的时间请就这篇文献做报告;
        4. 报告后将有大约10-15分钟供您回答关于这篇文献的问题;
        5. 此后将有大约10-15分钟供您回答其他问题。
      • 如果您是申请博士生,那么
        1. 面谈时,我们将先进行大约15分钟的交谈,以便进一步了解情况;
        2. 您将做50-60分钟的报告(请准备PowerPoint投影片),听众是我本人以及我的研究组目前的成员。前10分钟请介绍您的个人情况,后面的时间请介绍您以往的研究工作(大约30分钟),以及您对今后研究的打算(大约10分钟);
        3. 此后将有大约 20-40 分钟供您回答各种问题。
    1. 如果您在外地,也许可以在我参加学术会议时安排面谈,但最佳方式还是上面描述的那样。
  6. 请注意,即使我在上述过程后表示乐意接纳您,您仍然需要通过正常的研究生入学考试获得南京大学计算机科学与技术系的博士生/硕士生入学资格(或获得保送资格)
  7. 如果您认识我的亲友或同事,建议您不要通过他们与我联系,那样反倒会对您造成不好的影响。最好的方式是直接与我本人联系。
  8. 您与我联系的最佳方式是Email,通常我会在2、3天内回复(出差时可能会耽搁一些时间)。另外,我不希望您在没有预约的情况下直接闯入我的办公室,因为这将使我难以进行研究工作。
### 关于周志华机器学习中的集成学习方法与应用 #### 定义与概述 集成学习是一种通过构建并组合多个基础估计器来改进预测性能的方法。这种方法不仅能够提升模型的准确性,还能增强其稳定性[^1]。 #### 基本策略 集成学习主要分为两大类:序列化方法和并行化方法。前者代表性的有Boosting系列算法,在每一轮迭代中调整样本权重使得后续的学习器更加关注之前分错的数据;后者则以Bagging为代表,通过对原始数据集进行重采样得到若干子集用于训练不同的基学习器,最终将这些独立得出的结果综合起来作为整体输出[^2]。 #### 具体实现方式 - **Bagging (Bootstrap Aggregating)** Bagging通过自助法(bootstrap sampling)创建多样化的训练集合,进而训练出一组弱分类器,并采用投票机制决定最终类别标签。随机森林(Random Forests)便是基于这一原理发展而来的著名算法之一。 - **AdaBoost** AdaBoost即自适应boosting, 是一种典型的加权更新方案下的boosting算法。它赋予那些被前序个体学习器错误分类过的样本更高的权重,从而让新的学习器更专注于难处理的部分。随着轮次增加,各成员贡献逐渐累积形成强分类器[^3]. ```python from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier # 使用RandomForest作为bagging的例子 rf = RandomForestClassifier(n_estimators=100) # 使用AdaBoost作为boosting的例子 adaboost = AdaBoostClassifier(n_estimators=50) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) rf.fit(X_train, y_train) adaboost.fit(X_train, y_train) ``` #### 应用场景 集成学习广泛应用于各类监督式学习任务当中,特别是在解决复杂模式识别问题上表现出色,比如图像识别、自然语言处理等领域内的多分类或多标记分类任务。此外,在异常检测方面也有着不俗的表现,例如金融欺诈预警系统等实际案例中均可见到该技术的身影[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值