题目大意:给出包的坐标和n个物品的坐标,你初始从包出发,每次可以最多拿两个物品,问怎么走使路程最短,输出方案。
题解:状压dp,开始我想状态一直没有想出来。容易知道只要你拿包的配对方案是一定的,那么不管按什么顺序拿,都是可以的,所以我们规定选下标最靠前的。。。这样大幅度降低了复杂度,就是代码里那个break。
那么我们设dp[i]表示i这个二进制状态,也就是说当前状态选了i这些物品的答案。然后进来一个物品(当前没被选的物品中下标最靠前的一个),我们先更新把这个物品单独拿的后继状态,再枚举和哪个配对然后更新对应状态。脑补一下可以发现这样搞应该可以覆盖掉所有的拿法的。
%%%__debug
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define X first
#define Y second
#define pii pair<int,int>
#define MP make_pair
#define DEBUG(...) fprintf(stderr,__VA_ARGS__)
using namespace std;
const int MAXN=27;
pii point[MAXN];
int dis[MAXN][MAXN],n,dp[1<<24],pre[1<<24];
vector<int> ans;
int D(pii& a,pii& b)
{
int x=abs(a.X-b.X),y=(a.Y-b.Y);
return x*x+y*y;
}
void print(int i,pii& a)
{
DEBUG("point:%d:: %d %d\n",i,a.X,a.Y);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("8C.in","r",stdin);
freopen("8C.out","w",stdout);
#endif
int x0,y0;
cin>>x0>>y0;
cin>>n;
point[n].X=x0,point[n].Y=y0;
for(int i=0;i<n;i++)
cin>>point[i].X>>point[i].Y;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
//print(i,point[i]);
//print(j,point[j]);
//print(n,point[n]);
dis[i][j]=D(point[i],point[j])+D(point[n],point[i])+D(point[n],point[j]);
//DEBUG("dis(%d,%d)==%d\n",i,j,dis[i][j]);
}
memset(dp,-1,sizeof(dp));dp[0]=0;
for(int i=0;i<(1<<n);i++)
{
if(dp[i]!=-1)
{
for(int j=0;j<n;j++)
{
if(!(i&(1<<j)))
{
int t=i|(1<<j);
//DEBUG("pre::%d now:: %d\n",t,i);
if(dp[i]+dis[j][j]<dp[t]||dp[t]==-1)
{
dp[t]=dp[i]+dis[j][j];
pre[t]=i;
}
for(int k=0;k<n;k++)
{
if(!(t&(1<<k)))
{
int t2=t|(1<<k);
//DEBUG("pre::%d now:: %d\n",t2,i);
if(dp[i]+dis[j][k]<dp[t2]||dp[t2]==-1)
{
dp[t2]=dp[i]+dis[j][k];
pre[t2]=i;
}
}
}
break;//没写这个T了
}
}
}
}
int x=(1<<(n))-1;
//DEBUG("%d\n",x);
printf("%d\n",dp[x]);
ans.push_back(0);
while(x)
{
int p=pre[x],k=p^x;
for(int i=0;i<n;i++)
{
DEBUG("now::%d pre::%d dif::%d bit::%d\n",x,p,k,i);
if(((1<<i)&k))
ans.push_back(i+1);
}
ans.push_back(0);
x=p;
}
for(int i=0;i<ans.size();i++)
printf("%d ",ans[i]);
}