Codeforces 8C

题目大意:给出包的坐标和n个物品的坐标,你初始从包出发,每次可以最多拿两个物品,问怎么走使路程最短,输出方案。
题解:状压dp,开始我想状态一直没有想出来。容易知道只要你拿包的配对方案是一定的,那么不管按什么顺序拿,都是可以的,所以我们规定选下标最靠前的。。。这样大幅度降低了复杂度,就是代码里那个break。
那么我们设dp[i]表示i这个二进制状态,也就是说当前状态选了i这些物品的答案。然后进来一个物品(当前没被选的物品中下标最靠前的一个),我们先更新把这个物品单独拿的后继状态,再枚举和哪个配对然后更新对应状态。脑补一下可以发现这样搞应该可以覆盖掉所有的拿法的。
%%%__debug

#include<cmath>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define X first
#define Y second
#define pii pair<int,int>
#define MP make_pair
#define DEBUG(...) fprintf(stderr,__VA_ARGS__)
using namespace std;
const int MAXN=27;
pii point[MAXN];
int dis[MAXN][MAXN],n,dp[1<<24],pre[1<<24];
vector<int> ans;
int D(pii& a,pii& b)
{
    int x=abs(a.X-b.X),y=(a.Y-b.Y);
    return x*x+y*y;
}
void print(int i,pii& a)
{
    DEBUG("point:%d:: %d %d\n",i,a.X,a.Y);
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("8C.in","r",stdin);
    freopen("8C.out","w",stdout);
#endif
    int x0,y0;
    cin>>x0>>y0;
    cin>>n;
    point[n].X=x0,point[n].Y=y0;
    for(int i=0;i<n;i++)
        cin>>point[i].X>>point[i].Y;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        {
            //print(i,point[i]);
            //print(j,point[j]);
            //print(n,point[n]);
            dis[i][j]=D(point[i],point[j])+D(point[n],point[i])+D(point[n],point[j]);
            //DEBUG("dis(%d,%d)==%d\n",i,j,dis[i][j]);
        }
    memset(dp,-1,sizeof(dp));dp[0]=0;
    for(int i=0;i<(1<<n);i++)
    {
        if(dp[i]!=-1)
        {
            for(int j=0;j<n;j++)
            {
                if(!(i&(1<<j)))
                {
                    int t=i|(1<<j);
                    //DEBUG("pre::%d now:: %d\n",t,i);
                    if(dp[i]+dis[j][j]<dp[t]||dp[t]==-1)
                    {
                        dp[t]=dp[i]+dis[j][j];
                        pre[t]=i;
                    }
                    for(int k=0;k<n;k++)
                    {
                        if(!(t&(1<<k)))
                        {
                            int t2=t|(1<<k);
                            //DEBUG("pre::%d now:: %d\n",t2,i);
                            if(dp[i]+dis[j][k]<dp[t2]||dp[t2]==-1)
                            {
                                dp[t2]=dp[i]+dis[j][k];
                                pre[t2]=i;
                            }
                        }
                    }
                    break;//没写这个T了
                }
            }
        }
    }
    int x=(1<<(n))-1;
    //DEBUG("%d\n",x);
    printf("%d\n",dp[x]);
    ans.push_back(0);
    while(x)
    {
        int p=pre[x],k=p^x;
        for(int i=0;i<n;i++)
        {
            DEBUG("now::%d pre::%d dif::%d bit::%d\n",x,p,k,i);
            if(((1<<i)&k))
                ans.push_back(i+1);
        }
        ans.push_back(0);
        x=p;
    }
    for(int i=0;i<ans.size();i++)
        printf("%d ",ans[i]);
}               
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值