消费者如何做出消费决策?

引言

为什么要消费?需求是创新之母。

幸福是什么?

萨缪尔森幸福方程式:
幸福 =效用 / 欲望

什么是效用?

效用是从消费某种商品中得到的满足程度。

  1. 效用是一种心理感觉。
    消费同一种物品,不同的人有不同的效用;同一个人在不同的情形下有不同的效用。
  2. 满足程度越高,效用越大;满足程度越低,效用越小。

效用最大化与消费者均衡

假设条件:

消费者知道自己的效用
消费者理性:面临几种可供选择的方案时,消费者会选择使其效用达到最大的方案
消费者的行为与目标具有一致性
消费者的偏好稳定
消费者的收入是一定的(资源稀缺)
商品的价格不变

一、基数效用(边际效用分析方法)
基数效用理论:效用可以用具体的数字来衡量,并可以加总求和。

二 、序数效用(无差异曲线方法)
序数效用论:效用无法计量和加总,只能表示出满足程度的高低和次序。

消费者的目标:面对各种商品,以自己有限的收入获取最大化的效用。

消费者均衡的数学证明

在这里插入图片描述

基数效用论下消费者均衡的实现条件

总效用(Total Utility):
消费一定量某种商品所得到的总满足程度。

边际效用(Marginal Utility):
增加一单位商品的消费所增加的满足程度。

在这里插入图片描述
边际效用递减规律:若其它商品的消费量保持不变,随着消费者对某种商品消费量的增加,他从连续增加的每一单位中得到的边际效用递减。

在这里插入图片描述

消费者均衡(consumer equilibrium)

消费者以使总效用最大化的方式来配置其收入的状态。

消费者均衡的条件(效用最大化的条件)

文字表述:消费者用全部收入所购买的各种商品带来的边际效用,与为购买这些物品所支付的价格的比例相等
在这里插入图片描述

序数效用论下消费者均衡的实现条件:

无差异曲线 与 预算约束线

无差异曲线 (Indifference Curves)

无差异曲线表示带给消费者相同满足程度的消费组合的一条曲线。

在这里插入图片描述
同一条无差异曲线上的各种组合有相同的效用
无差异曲线的斜率越来越小(凸向原点),因为边际效用递减
斜率等于边际效用之比

无差异曲线的斜率

无差异曲线的斜率称为边际替代率(MRS),表示用一种商品去交换另一种商品的比率,为负值。

在这里插入图片描述

无差异曲线的特征
  1. 消费者对较高无差异曲线的偏好大于较低无差异曲线
  2. 无差异曲线向右下方倾斜
  3. 无差异曲线不能相交
  4. 无差异曲线凸向原点
    在这里插入图片描述

预算约束线

消费者在货币支付能力的限制下所能购买的最大商品组合,也叫等收入线、等支出线、消费可能线。
在这里插入图片描述
预算约束线旋转表示相对价格的变化
预算约束线移动表示收入水平的变化

消费者均衡

价格比(预算约束线的斜率)等于边际效用之比(无差异曲线的斜率),消费者均衡的条件再一次得以证明。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值