Python数据可视化之Matplotlib-技巧篇

本文介绍了使用Python的Matplotlib库进行数据可视化的几个技巧,包括绘制特殊直线、水平与垂直直线、设置坐标刻度与特殊点的注释,以及如何解决Matplotlib显示中文乱码的问题。通过实例展示了各种函数的使用方法,如axline()、axhline()、axvline()、annotate()和text()。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常用技巧
特殊直线

画出过特定点的无穷直线,可以用 axline() 来实现。

确定平面直线两个不同的点或者一个点和斜率

语法:plt.axline(xy1, xy2=None, *, slope=None, **kwargs)

参数说明:

需要有 xy1 ,xy2 两个点坐标或者一个点 xy1 坐标和斜率 slope。

color 或 c : 线条颜色。

linestyle 或 ls :线条样式,如 ‘-’, ‘–’, ‘-.’, ‘:’ (利用这个画虚线哦)

linewidth 或 lw :线条宽度,是实数。

例:

x = np.linspace(-10,10,100)
y = 1/(1+np.exp(-x)) # sigmoid 函数

plt.figure(figsize=(10,5))
plt.plot(x,y,label="$\sigma(x)$",color="r",linewidth=2)
plt.title("Matplotlib Figure: koding") #图表标题

plt.axline((-5,0),(5,1),color="b",ls="-",lw=2.5)
plt.axline((0,0.5),slope=0.5,color="g",ls=":",lw=2.5)

plt.grid()      #显示网格
plt.show()      #显示绘图窗口

结果:

在这里插入图片描述

水平与垂直直线

画出水平直线利用 axhline(),画出垂直直线 axvline()。

axhline()

语法:plt.axhline(y, xmin=0, xmax=1, **kwargs)

参数说明:

在 [xmin , xmax] 水平区间上,画出水平直线 y。xmin , xmax没有指定的情况下,默认是整个水平区间。

color 或 c : 线条颜色。

linestyle 或 ls :线条样式,如 ‘-’, ‘–’, ‘-.’, ‘:’ (利用这个画虚线哦)

linewidth 或 lw :线条宽度,是实数。

也有:plt.hlines(y, xmin, xmax,*, data=None, **kwargs)。同上,只是返回对象不同。

axvline()

语法:plt.axvline(x=0, ymin=0, ymax=1, **kwargs)

参数说明:在 [ymin , ymax] 垂直区间上,画出垂直直线 x。ymin , ymax没有指定的情况下,默认是整个水平区间。

color 或 c : 线条颜色。

linestyle 或 ls :线条样式,如 ‘-’, ‘–’, ‘-.’, ‘:’ (利用这个画虚线哦)

linewidth 或 lw :线条宽度,是实数。

也有:plt.vlines(x, ymin, ymax,*, data=None, **kwargs)。同上,只是返回对象不同。

例:

x = np.linspace(0,4*np.pi,100)
y = np.sin(x)
plt.figure(figsize=(10,5))
plt.plot(x,y,label="sin(x)"<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值