最短路径算法(Dijkstra算法)

Dijkstra算法算是贪心思想实现的,首先把起点到所有点的距离存下来找个最短的,然后松弛一次再找出最短的,所谓的松弛操作就是,遍历一遍看通过刚刚找到的距离最短的点作为中转站会不会更近,如果更近了就更新距离,这样把所有的点找遍之后就存下了起点到其他所有点的最短距离。

(1) 初始化:

● 将源点v0加到S中,即S[v0]=true

● 将v0到各个终点的最短路径长度初始化为权值,即Dist[i]=G.arcs[v0][vi]

● 如果v0和顶点vi之间有弧,则将vi的前驱置为v0,即Path[i]=v0,否则Path[i]=-1

(2) 循环n-1次执行以下操作:

● 选择下一条最短路径的终点vk,使得Dist[k]=Min{Dist[i]|vi∈V-S}

● 将vk加入到S中,即S[vk]=true

● 根据条件更新从v0出发到集合V-S上任一顶点的最短路径的长度,若条件Dist[k]+G.arcs[k][i]<Dist[i]成立,则更新Dist[i]=Dist[k]+G.arcs[k][i],同时更改vi的前驱为vk;Path[i]=k

算法思想

//图的定义-邻接矩阵
#define MaxInt 32767        //表示极大值 即无穷大
#define MVNum 100            //最大顶点数
typedef string VerTexType;    //设顶点的数据类型为string,需#include<string>
typedef int ArcType;        //设权值类型为整型
typedef struct
{
    VerTexType vexs[MVNum];        //顶点表
    ArcType arcs[MVNum][MVNum];    //邻接矩阵
    int vexnum, arcnum;            //图的当前点数和边数
}AMGraph;


int Dist[MVNum];//Dist存当前找到的最短路径长度
int Path[MVNum];//当前找到的最短路径最后一个中转顶点,也就是想要到达这个点,需要经过哪一个点
bool S[MVNum];//标记当前是否已求出最短路径,也可以理解为true是集合s,false是集合v-s
void ShortestPath_DIJ(AMGraph G, int v0)//求有向网G的v0顶点到其余顶点的最短路径
{
    int n, v, i, w, min;
    n = G.vexnum;//顶点数
    //初始化
    for (v = 0; v < n; v++) //n个顶点依次初始化 
    {
        S[v] = false;//S初始为空集 
        Dist[v] = G.arcs[v0][v];//将v0到各个终点的最短路径长度初始化为弧上的权值
        if (Dist[v] < MaxInt) Path[v] = v0;//如果v0与v之间有弧,则将v的前驱置为v0
        else Path[v] = -1;//无弧,置为-1 
    }
    //S集合
    S[v0] = true;//将v0加入S
    Dist[v0] = 0;//原点到原点的距离为0

    //******初始化结束,开始主循环,每次求得v0到某个顶点v的最短路径,将v加入到S集
    for (i = 1; i < n; i++)//n-1个顶点 
    {
        min = MaxInt;
        //找最小的那条路径,并入集合S
        for (w = 0; w < n; w++)
            if (!S[w] && Dist[w] < min)//选择一条当前的最短路径,终点为v 
            {
                v = w; min = Dist[w];
            }
        //并入s
        S[v] = true;//将v加入S 
        for (w = 0; w < n; ++w)//更新从v0出发到集合V-S上所有的最短路径长度 
            if (!S[w] && (Dist[v] + G.arcs[v][w]) < Dist[w])
            {
                Dist[w] = Dist[v] + G.arcs[v][w];//更新D[w] 
                Path[w] = v;//更改w的前驱为v 
            }
    }
}

打印出从begin到end的路径:

void DisplayPath(AMGraph G, int begin, int temp)
{
    if(begin == temp) {
        cout << G.vexs[temp] ;
        return ;
    };
    if (Path[temp] != -1)
    {
        DisplayPath(name, begin, Path[temp]);
        cout << "-->"<< G.vexs[temp] ;
    }
}

对于上面的图片经计算v1到v8的最短路径,代码如下:

#include<iostream>
using namespace std;

#define MaxInt 32767        //表示极大值

int Dist[8];//最短路径长度
int Path[8];//中转顶点
bool S[8];//访问标志位 
//采用迪杰斯特拉算法,求有向网G的v0顶点到其余顶点的最短路径
void ShortestPath_DIJ(int G[][8], int v0,int nums)
{

    int n, v, i, w, min;
    n = nums;//顶点数
    for (v = 0; v < n; v++) //n个顶点依次初始化 
    {
        S[v] = false;
        Dist[v] = G[v0][v];//将v0到各个终点的最短路径长度初始化为弧上的权值
        if (Dist[v] < MaxInt) Path[v] = v0;//v0与v之间有弧,则将v的前驱置为v0
        else Path[v] = -1;//无弧,置为-1 
    }
    S[v0] = true;
    Dist[v0] = 0;
    
    for (i = 1; i < n; i++)//n-1个顶点 
    {
        min = MaxInt;
        for (w = 0; w < n; w++)
            if (!S[w] && Dist[w] < min)
            {
                v = w; min = Dist[w];
            }
        S[v] = true;
        for (w = 0; w < n; ++w)
            if (!S[w] && (Dist[v] + G[v][w]) < Dist[w])
            {
                Dist[w] = Dist[v] + G[v][w];
                Path[w] = v;
            }
    }
}
void DisplayPath(string name[], int begin, int temp)
{
    if(begin == temp) {
        cout << name[temp] ;
        return ;
    };
    if (Path[temp] != -1)
    {
        DisplayPath(name, begin, Path[temp]);
        cout << "-->"<< name[temp] ;
    }
}


int main(){
//    邻接矩阵 
    int G[8][8] = {
            {0,6,MaxInt,1,MaxInt,50,MaxInt,MaxInt},//v1
            {MaxInt,0,43,11,6,MaxInt,MaxInt,MaxInt},//v2
            {MaxInt,MaxInt,0,MaxInt,MaxInt,MaxInt,MaxInt,8},//v3
            {MaxInt,MaxInt,MaxInt,0,12,MaxInt,MaxInt,MaxInt},//v4
            {MaxInt,MaxInt,MaxInt,MaxInt,0,MaxInt,24,MaxInt},//v5
            {MaxInt,MaxInt,MaxInt,MaxInt,1,0,12,MaxInt},//v6
            {MaxInt,MaxInt,MaxInt,MaxInt,MaxInt,MaxInt,0,20},//v7
            {MaxInt,MaxInt,MaxInt,MaxInt,MaxInt,MaxInt,MaxInt,0}//v8
            };
    string name[8];
    for(int i = 0;i <8;i++){
        name[i] ="v"+to_string(i+1);
//        cout<<name[i]<<endl; 
    }
    ShortestPath_DIJ(G,0,8);
//    for(auto v:Path){
//        cout<<v<<endl;
//    }
    DisplayPath(name, 0, 7);
    cout<<endl<<"距离为"<<Dist[7]<<endl; 
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值