自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(19)
  • 收藏
  • 关注

原创 2021-08-17

JZ 37 序列化与反序列化二叉树序列化其实就是把二叉树保存起来,反序列化就是再符合,这里我们采用先序遍历访问二叉树 并用String保存`public class Codec { //用于保存二叉树 StringBuilder sb = new StringBuilder(); LinkedList<String> res = new LinkedList(); // Encodes a tree to a single string. publ

2021-08-17 21:16:03 120

原创 LC.146 实现LRU机制

通过双向链表加HashMap实现LRU1.先实现一个Node节点类class Node{ int key; int val; Node pre; Node next; public Node(int key,int val){ this.key = key; this.val = val; this.pre = null; this.next = null; }}再接着实现双向链表cl

2021-08-15 15:38:37 146

原创 回溯以及DFS

回溯与DFS的关键区别在于 DFS会一直深入直到路径可走时结束 而回溯在满足要求后会返回。简而言之就是回溯会回头 DFS 不会。回溯的代码框架backtrack(路径,选择列表,最终结果){//在这块 应该判断我们选择的这一步是否符合要求 比如是否越界,是否已经访问过等 如果不满足则先执行return。//其次 判断是否达到目的 如果满足 则将改路径加入到最终结果中 然后returnfor(选择 :选择列表){ track.add(选择); backtrack(....);

2021-04-02 15:57:17 352

原创 浏览器报错!!!DNS_PROBE_FINISHED_BAD_CONFIG

无缘无故,浏览器突然无法连接到网络,但是其他应用比如QQ,网易云都是可以正常上网的,进而排除网络问题浏览器报了DNS_PROBE_FINISHED_BAD_CONFIG这个错误用ping命令发现找不到主机,这时可以判断是DNS解析出现问题解决方法删除现在的ip地址,重新获取新的IP地址进入命令行,(1)输入ipconfig/release :释放目前的IP地址(2...

2019-08-11 15:52:52 15953

原创 机器学习实践——利用SVD简化数据

SVD(奇异值分解)优点:简化数据,去除噪音,提高算法的结果缺点:数据的转换可能难以理解利用SVD,我们可以使用小得多的数据集来表示原始数据集,这样做实际上是去除了噪声和冗余信息,以此达到了优化数据、提高结果的目的。SVD的应用LSA(隐形语义分析)在LSA中,矩阵是由文档和词语组成的,当我们应用SVD时,就会构建出多个奇异值,这些奇异值就代表了文档中的主题或概念,这一特点...

2019-08-08 16:36:44 333

原创 机器学习实践——利用PCA简化数据

什么是降维?降维的目的又是什么?现实世界中的数据往往具有多个特征值,但是在众多特征中起到关键作用的往往只是个别特征,或是特征之间存在着依赖的关系,从众多特征中选取较为重要特征的过程就称之为降维。降维的目的就是对输入数据进行削减,由此剔除数据中的噪音并提高机器学习方法的性能。降维的方法很多,这里介绍应用最为广泛的方法:主成分分析法(PCA)。在PCA中,数据有原来的坐标系转换到新的坐...

2019-08-06 21:17:25 274

原创 机器学习实践——树回归(CART算法)

背景:线性回归需要拟合所有的数据才能生成模型,但是,当数据拥有众多的特征以及特征之间的关系十分复杂时,这种方法显得太难了。除此之外,实际生活中很多数据都是非线性的,不能使用全局线性模型进行拟合。因此提出树结构与回归法。CART算法称为分类回归树,意味着可以处理分类问题,也可以用于回归问题。对于给定的训练数据集,如果是分类树,CART采用GINI值衡量节点纯度;如果是回归树,采用样本方差衡量节点...

2019-08-06 11:38:33 1415 1

转载 论文笔记:Short Text Classification: A Survey

Short Text Classification: A SurveyGe Song, Yunming Ye, Xiaolin Du, Xiaohui Huang, and Shifu BieShenzhen Key Laboratory of Internet Information Collaboration, Shenzhen Graduate Scho2...

2019-07-26 18:51:33 469

原创 机器学习实践——基于概率论的分类方法:朴素贝叶斯

基于贝叶斯进行分类思想:计算该样本点属于每个标签的概率,选择概率最大的那个标签作为分类结果。首先需要知道贝叶斯条件概率公式: P(A)为先验概率,在B发生之前 A的概率P(A|B)为后验概率,在B发生后A的概率P(B|A)/P(B)为调整因子,用于调整在B发生之后,对P(A)进行调整,P(A)的值是变大了,还是变小...

2019-07-25 20:50:35 205

转载 论文笔记:多标签学习综述

2014 TKDE(IEEE Transactions on Knowledge and Data Engineering)张敏灵,周志华简单介绍传统监督学习主要是单标签学习,而现实生活中目标样本往往比较复杂,具有多个语义,含有多个标签。本综述主要介绍了多标签学习的一些相关内容,包括相关定义,评价指标,8个多标签学习算法,相关的其它任务。论文大纲相关定义:学习任务,三种策略 评价指...

2019-07-24 21:03:06 1023

原创 机器学习实践——预测数值型数据:回归

线性回归过程就是:将输入项乘上一些常量,然后再累加起来,就得到预测值。那么如何找到这些常量呢?求解这些回归系数的过程就是回归。根据回归过程,可以得到一般公式: Y = wT*x现在问题是,我们有x的值和y的值,如何求出向量w的值,常用的方法就是是误差最小的 w,所以采用平方误差 对W进行求导,...

2019-07-23 16:45:17 661 3

原创 机器学习实践——基于单层决策树的AdaBoost算法

背景:集成算法是将相同或不同的分类器组合成为一个强分类的方法,这种组合方法包括自聚汇聚法(bagging),还有boosting方法。我们选用最流行的AdaBoos算法。AdaBoost的运行过程:训练数据集的每一个样本,应赋予一个权重,这些权重构成一个向量D,一开始,这些权重都初始化为相等的值,首先在训练数据集上训练出一个弱分类器并计算该分类器的错误率,然后在同一数据集上再次训练弱分类器,但...

2019-07-21 15:13:18 1342

原创 机器学习实践——Logistic回归

利用Logistic回归进行分类的主要思想:根据现有数据对分类边界线建立回归公式,以此进行分类。二值型输出分类器的数学原理:理想的函数是能够接受所有的输入,然后预测出类别。例如两个类的情况下,函数的输出是0或是1,这就需要Sigmoid函数。 因此,为了实现回归分类器,我们可以把每个特征都乘上一个回归系数...

2019-07-16 21:57:30 483

原创 机器学习实践——决策树(ID3算法)

决策树数据挖掘分类算法中最直观最容易理解的算法之一,基本不需要太多的理论知识就可以理解决策树的思想,是解决分类问题较好的方法之一。ID3算法应用香农熵的理论知识,先来了解一些理论知识。信息增益:在划分数据之前或之后信息发生的变化称为信息增益。香农熵(熵):信息增益的度量单位。划分数据的大原则:将无序的数据变得有序。算法思想:如何度量数据变的愈发有序,方法之一就是计算每个特征值划...

2019-07-12 18:25:45 329

原创 机器学习实践——KNN算法的实现(二)

示例二:手写识别系统这部分内容是将识别出图像中显示的数字,所使用的代码依然是机器学习与实践上的,在此基础上加入一些注释,便于理解代码。自己的一些心得:之前KNN算法那块给出了四个参数,如果再次拿到一个可以用KNN算法解决的问题,首先想到是否满足KNN算法的四个参数,inx:就是输入集也可以称之为训练集,dataSet:训练集,labels:训练集对...

2019-07-11 15:55:21 271

原创 机器学习实践——KNN算法的实现(一)

KNN算法是数据挖掘中应用于分类的比较简单的一种算法,也是一种基于实例的算法。工作原理(通俗):建立一个d维空间,d就是属性的个数,训练集中的类标号就在该d维空间中,给定一个测试样例,根据属性找到在d维空间的位置,然后画一个半径为k的圆,在圆内中属于包含哪些类就是哪一类。最关键点就在于k的取值,若太大则会产生误分类,太小可能会受到噪音带来的影响接下来这段代码是机器学习与实践上的关于KNN的...

2019-07-11 10:54:36 468

原创 Windows下安装sklearn步骤

在Windows下安装sklearn 需要先安装numpy 以及scipy!!!方法一:numpy 以及scipy的安装并不建议在命令行中使用pip install XXX,应该去官网下载相应的包,如图一所示,然后在命令行中进入该包所在的文件夹下 使用命令 install XXX.whl 进行安装 ...

2019-07-07 20:28:32 12574

原创 java Web 链接数据库遇到的一些不兼容问题

1.报错原因:是加载不到com.mysql.jdbc.Driver 这个类; 但是在我在项目中的确有已经导入了 mysql-connector-java-8.0.11.jar!!! java.lang.ClassNotFoundException: com.mysql.jdbc.Driverat org.apache.catalina.loader.WebappClassLoade...

2018-05-22 11:10:33 419

原创 冒泡排序的java代码

public class Test { public static void main(String[] args){ //int arr[] = {9,8,7,6,5,4,3,2,1}; BubbleSort bSort  = new BubbleSort(); int arr[] = bSort.getDate(); bSort.sort(arr); bSort.printDate(...

2018-05-14 15:33:27 257 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除