算法训练 开心的金明 01背包问题 动态规划

问题描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎 么布置,你说了算,只要不超过N元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一 个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过N元(可以等于N元)的前提 下,使每件物品的价格与重要度的乘积的总和最大。
  设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为 j1,j2,……,jk,则所求的总和为:
  v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]w[jk]。(其中为乘号)
  请 你帮助金明设计一个满足要求的购物单。

输入格式

输入文件 的第1行,为两个正整数,用一个空格隔开:
  N m
  (其中N(<30000)表示总钱 数,m(<25)为希望购买物品的个数。)
  从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有2个非负整数
  v p
  (其中v表示该物品的价格(v<=10000),p表示该物品的重要度(1~5))

输出格式

输出文件只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<100000000)。

思路:

一个显然的01背包问题,只不过是把01背包中价值修改成了重要度乘以价格,这里把例子除以100,方便画表格
在这里插入图片描述
表格的画法,增加一个0号物品,相当于什么都没有买的时候的选择
首先第一行很容易知道全部是0
第0行:因为买第0号物品等于没有买,所以第一行全部是0;
从第1行开始,对每个单元格进行如下判断

  1. 能不能买得起这个物品,(即总金钱数是否大于该物品的价格)
  2. 若是买不起,这个单元格就填写上一行的值
  3. 若是买的起,则先买下当前物品,然后计算出剩下的钱,去上一行对应的列中取出对应的值,再加上当前物品的重要度×价格,然后和上一行的数据进行比对,取较大的值

举例:
单元格第1行第7列(1,7),对比价格,买下当前物品需要8元钱,而现在只有7元钱,买不起,所以直接等于上一行(0,7)的值,填写0。
单元格第1行第8列(1,8),对比价格,能买下,所以先买下,剩余0元钱,去上一行的0元钱对应的值找,得到0,则若是买下这个物品,重要度×价格的总和是 8×2 + 0 = 16 和上一行的数据((0,8)处的数据为0)进行对比,取较大的值16,所以这个填16。

import java.util.Scanner;

public class Main {
	public static void main(String[] args){
		Scanner scan = new Scanner(System.in);
		int n = scan.nextInt(); // 总钱数
		int m = scan.nextInt(); // 物品数
		int[] price = new int[m + 1]; // 物品价格
		int[] weight = new int[m + 1]; // 重要度
		for (int i = 1; i <= m; i++) {
			price[i] = scan.nextInt();
			weight[i] = scan.nextInt();
		}
		int[][] table = new int[m + 1][n + 1];
		for (int i = 1; i < table.length; i++) {
			int w = price[i] * weight[i]; // 当前物品的重要度✖物品价格
			for (int j = 1; j < table[i].length; j++) {
				// 判断能否买下这个物品
				if (price[i] > j) {
					// 买不下
					table[i][j] = table[i - 1][j];
				} else {
					int money = j - price[i];
					int tmp = table[i - 1][money] + w;
					if (tmp > table[i-1][j]) {
						table[i][j] = tmp;
					}else{
						table[i][j] = table[i-1][j];
					}
				}
			}
		}
		System.out.println(table[m][n]);
	}
}
当然,下面是使用01背包算法解决P1060 开心金明问题的代码,并附有详细注释: ```cpp #include <iostream> #include <algorithm> using namespace std; const int MAXN = 33000; // 背包最大容量 int dp[MAXN]; // 动态规划数组,dp[i]表示容量为i时的最大价值 int main() { int n, m; // n表示物品个数,m表示背包容量 cin >> m >> n; for (int i = 0; i < n; i++) { int v, p; // v表示物品的体积,p表示物品的价值 cin >> v >> p; for (int j = m; j >= v; j--) { // 从后往前遍历背包容量,保证之前计算的dp[j-v]没有被覆盖 dp[j] = max(dp[j], dp[j - v] + v * p); // 更当前容量下的最大价值 } } cout << dp[m] << endl; // 输出背包容量为m时的最大价值 return 0; } ``` 代码解释: 1. 首先,我们定义了常量MAXN表示背包的最大容量,并声明了一个长度为MAXN的dp数组,dp[i]表示容量为i时的最大价值。 2. 接下来,从输入中读取背包容量m和物品个数n。 3. 然后,使用一个循环遍历每个物品。在每次循环中,我们读取当前物品的体积v和价值p。 4. 接着,使用一个逆序的循环遍历背包容量j,从m到v。这样做是为了保证之前计算的dp[j-v]没有被覆盖。 5. 在内层循环中,我们更dp[j]的值,将其更为dp[j]和dp[j-v] + v * p的较大值。其中,dp[j]表示不选当前物品时的最大价值,dp[j-v] + v * p表示选择当前物品时的最大价值。 6. 最后,输出dp[m],即背包容量为m时的最大价值。 希望这个解释对你有帮助!如果还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值