过河
题目描述
在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,…,L0,1,…,L(其中LL是桥的长度)。坐标为00的点表示桥的起点,坐标为LL的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是SS到TT之间的任意正整数(包括S,TS,T)。当青蛙跳到或跳过坐标为LL的点时,就算青蛙已经跳出了独木桥。
题目给出独木桥的长度LL,青蛙跳跃的距离范围S,TS,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。
输入格式
第一行有11个正整数L(1 \le L \le 10^9)L(1≤L≤10
9
),表示独木桥的长度。
第二行有33个正整数S,T,MS,T,M,分别表示青蛙一次跳跃的最小距离,最大距离及桥上石子的个数,其中1 \le S \le T \le 101≤S≤T≤10,1 \le M \le 1001≤M≤100。
第三行有MM个不同的正整数分别表示这MM个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。
输出格式
一个整数,表示青蛙过河最少需要踩到的石子数。
输入输出样例
输入 #1
10
2 3 5
2 3 5 6 7
输出 #1
2
可以用2520来删去那几段没有定点的区域,因为2520是lcm(1,2,3,…,10)lcm(1,2,3,…,10)[1,2,3,…,10的最小公倍数],所以只要每一段大于2520 * 2,就用2520
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxm 104
#define maxn 2000001
using namespace std;
int l,s,t,m,ans;
int pos[maxm],f[maxn]; //f意义如上
bool bo[maxn]; //bo[i]=1 表示在i位置有石子
int min(int a,int b){return a<b?a:b;}
int main()
{
scanf("%d%d%d%d",&l,&s,&t,&m);
for(int i=1;i<=m;++i) scanf("%d",&pos[i]);
memset(f,127,sizeof f);f[0]=0;//初始化
pos[m+1]=l; //将pos[m+1]附为l可以方便一点,后来缩的时候也要用到
sort(pos+1,pos+m+1);//一定要排序,因为题目中没有说是正序的
int d=2520,dec=0; //d就是2520,dec就是每个点要在缩前向前移的长度
if(s==t) //特判s=t时
{
for(int i=1;i<=m;++i) if(pos[i]%s==0) ans++;
printf("%d\n",ans);return 0;
}
for(int i=1;i<=m+1;++i) //i=m+1也要被考虑,要缩最后1个石头和终点的点
{
pos[i]-=dec; //缩这条边之前先把点前移
while(pos[i]-pos[i-1]>d*2){pos[i]-=d; dec+=d;}//将点向前挪动d格,后面移动的数量要移dec+d格(自行理解)
bo[pos[i]]=1; //这个点就有石子了
}
int ans=2147483647;bo[pos[m+1]]=0; //在pos[m+1]的位置是没有石子的,是终点,要附回来
for(int i=s;i<=pos[m+1]-1+t;++i) //跳过终点也算
for(int j=s;j<=t;++j)
if(i-j>=0) f[i]=min(f[i],f[i-j])+bo[i];//方程上面有解释QWQ
for(int i=pos[m+1];i<=pos[m+1]-1+t;++i) ans=min(ans,f[i]); //跳过终点也算答案的,取最小
printf("%d\n"); return 0;
}