刷题路-过河

本文介绍了一道关于青蛙过河的算法题目,分析了如何通过数学技巧简化问题,利用2520作为最小公倍数来删除无石子区域,并给出了C++代码实现。题目要求确定青蛙跳过石子过河的最小踩石次数,经过排序和点位移动,最终通过动态规划求解得出答案。
摘要由CSDN通过智能技术生成

过河

题目描述

在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,…,L0,1,…,L(其中LL是桥的长度)。坐标为00的点表示桥的起点,坐标为LL的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是SS到TT之间的任意正整数(包括S,TS,T)。当青蛙跳到或跳过坐标为LL的点时,就算青蛙已经跳出了独木桥。

题目给出独木桥的长度LL,青蛙跳跃的距离范围S,TS,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。

输入格式

第一行有11个正整数L(1 \le L \le 10^9)L(1≤L≤10
9
),表示独木桥的长度。

第二行有33个正整数S,T,MS,T,M,分别表示青蛙一次跳跃的最小距离,最大距离及桥上石子的个数,其中1 \le S \le T \le 101≤S≤T≤10,1 \le M \le 1001≤M≤100。

第三行有MM个不同的正整数分别表示这MM个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。

输出格式

一个整数,表示青蛙过河最少需要踩到的石子数。

输入输出样例

输入 #1

10
2 3 5
2 3 5 6 7

输出 #1

2

可以用2520来删去那几段没有定点的区域,因为2520是lcm(1,2,3,…,10)lcm(1,2,3,…,10)[1,2,3,…,10的最小公倍数],所以只要每一段大于2520 * 2,就用2520

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxm 104
#define maxn 2000001
using namespace std;
int l,s,t,m,ans;
int pos[maxm],f[maxn];	//f意义如上 
bool bo[maxn];			//bo[i]=1 表示在i位置有石子 
int min(int a,int b){return a<b?a:b;}
int main()
{
    scanf("%d%d%d%d",&l,&s,&t,&m);
    for(int i=1;i<=m;++i) scanf("%d",&pos[i]);
    memset(f,127,sizeof f);f[0]=0;//初始化 
	pos[m+1]=l; 		//将pos[m+1]附为l可以方便一点,后来缩的时候也要用到 
    sort(pos+1,pos+m+1);//一定要排序,因为题目中没有说是正序的
	int d=2520,dec=0;	//d就是2520,dec就是每个点要在缩前向前移的长度 
    if(s==t)			//特判s=t时
    {
        for(int i=1;i<=m;++i) if(pos[i]%s==0) ans++;
        printf("%d\n",ans);return 0;
    }
    for(int i=1;i<=m+1;++i)				//i=m+1也要被考虑,要缩最后1个石头和终点的点 
    {
        pos[i]-=dec;					//缩这条边之前先把点前移 
        while(pos[i]-pos[i-1]>d*2){pos[i]-=d; dec+=d;}//将点向前挪动d格,后面移动的数量要移dec+d格(自行理解) 
        bo[pos[i]]=1;					//这个点就有石子了 
    }
    int ans=2147483647;bo[pos[m+1]]=0;	//在pos[m+1]的位置是没有石子的,是终点,要附回来 
    for(int i=s;i<=pos[m+1]-1+t;++i)	//跳过终点也算 
        for(int j=s;j<=t;++j) 
        	if(i-j>=0) f[i]=min(f[i],f[i-j])+bo[i];//方程上面有解释QWQ 
    for(int i=pos[m+1];i<=pos[m+1]-1+t;++i) ans=min(ans,f[i]); //跳过终点也算答案的,取最小 
    printf("%d\n"); return 0;
}
农夫过河问题是经典的逻辑与位运算应用问题。在这个问题中,农夫需要将一只狼、一只羊和一棵白菜一起过河,但是农夫只能携带一种物品并且不能让狼吃了羊或者羊吃了白菜。我们可以使用位运算来解决这个问题。 首先,我们选择一个合适的数据结构来表示农夫、狼、羊和白菜的位置。我们可以使用一个四位二进制数,其中每一位代表一个物品的位置,例如农夫在第一位,狼在第二位,羊在第三位,白菜在第四位。 接下来,我们使用位运算来判断一个特定状态是否合法。首先,我们需要判断农夫是否在狼和羊、羊和白菜的同一侧。我们可以使用异或运算符(^)来实现这个判断。如果农夫和狼(或羊)在同一侧,结果为0;如果农夫和狼(或羊)不在同一侧,结果为1。如果任意两者结果都是0,表示这个状态是合法的。 然后,我们需要判断是否有非法状态,即农夫不在场的情况。我们可以使用位掩码(与运算符(&))来判断某个物品是否在特定位置。如果运算结果为0,表示这个物品不在指定位置。 基于以上分析,我们可以使用逻辑与位运算来解决农夫过河问题。我们从一个初始状态开始,不断生成下一个合法状态,直到找到目标状态。在整个过程中,我们需要使用位运算来判断状态的合法性。 总结来说,位运算在农夫过河问题中的应用是判断状态的合法性。通过使用位运算来判断农夫、狼、羊和白菜的位置关系,我们可以有效地解决这个问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值