欧拉函数

题目链接
题意:给定n个正整数ai,请你求出每个数的欧拉函数。
在这里插入图片描述
输入格式
第一行包含整数n。
接下来n行,每行包含一个正整数ai。
输出格式
输出共n行,每行输出一个正整数ai的欧拉函数。
数据范围
1≤n≤100,
1≤ai≤2∗1e9
输入样例:
3
3
6
8
输出样例:
2
2
4
思路:其实欧拉函数就是由容斥原理证明的,简单说就是:

  • 1,去掉q1,q2,q3的倍数,
  • 2,但有些同时是q1和q2的倍数的数被去掉了两次,所以再加回 p1*p2的倍数
  • 3,但对于q1,q2,q3的倍数,被减了三次又被加了三次,所以需要再减去q1q2q3

总结就是:
N - N/q1 - N/q2 - N/q3 -……
+N/q1q2 + N/a1a3 + N/q2q3 +……
-N/q1
q2*q3 - ……
……
化简一下就是欧拉方程啦!
代码实现:

#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
    int n; cin >> n;
    while(n --){
        int a; cin >> a;
        int res = a;
        for(int i = 2; i <= a/ i; i ++){
            if(a % i == 0){
                //res * (1 - 1/i)会出现小数,所以换一种写法
                res = res / i * (i - 1);
                while(a % i == 0) a /= i;
            }
        }
        if(a > 1) res = res / a * (a - 1);
        cout << res << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值