Codeforces E. Tree Painting (树形dp & 换根)

传送门

题意: 给定一棵有 n 个结点的无根树,所有结点都是白色的。第一次操作可以随意使一个结点染成黑色,之后每次操作可以使一个与黑色结点相邻的白色结点变成黑色。
每次操作可以获得的权值为被染成黑色的白色结点所在的白色连通块的结点数量。求可以获得的最大权值。
在这里插入图片描述
思路:

  • 最开始我以为选哪儿都一样,都是n到1的和,后面才知道是俺太菜了。
  • 只要确定第一个黑点后权值就确定了,所以这就是个选择根节点的树形dp题。
  • 但显然如果要每个节点都dfs求答案绝对超时,于是需要推算下换根公式预处理下。这里可以参考大佬博客,讲得还是非常简洁详细了。

代码实现:

#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int  inf = 0x7fffffff;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll   mod = 1e9 + 7;
const int  N = 2e5 + 5;

int n, s[N], f[N], g[N], ans;
vector<int> G[N];

void dfs(int u, int fa){
    s[u] = 1;
    for(int i = 0; i < G[u].size(); i ++){
        int v = G[u][i];
        if(v == fa) continue;
        dfs(v, u);
        s[u] += s[v];
        f[u] += f[v];
    }
    f[u] += s[u];
}

void DFS(int u, int fa){
    if(u != 1){
        g[u] = g[fa] + n - s[u]*2;
        ans = max(ans, g[u]);
    }
    for(int i = 0; i < G[u].size(); i ++){
        int v = G[u][i];
        if(v == fa) continue;
        DFS(v, u);
    }
}

signed main()
{
    IOS;

    cin >> n;
    for(int i = 1; i < n; i ++){
        int u, v; cin >> u >> v;
        G[u].push_back(v);
        G[v].push_back(u);
    }
    dfs(1, 0);
    ans = g[1] = f[1];
    DFS(1, 0);
    cout << ans << endl;

    return 0;
}

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页