题意: 给出一棵n个点的树,想让给每条边赋值,使得所有边权的乘积为k。因为k非常大,所有将k拆分成m个因子,换而言之就是n-1条边权的乘积得等于m个因子的乘积。
定义f(x, y)为点x到点y的简单路径所经过的所有边的权值和,现问怎么安排边权,才能让所有简单路径的 f 值和 (即下图所示公式)最大,并得到该max值。
思路:
- 比赛的时候相叉了,后面快结束了才想到 idea, 但对树的相关操作不熟就这么错过了上高分的机会,呜呜太菜了~
- 若m < n-1,那么剩下的边用1来填充。
- dfs找到每条边的经过次数,然后贪心一下将大的因子赋值给经过次数最多的边贡献就最多。
- 至于经过次数的计算,可以将 u - v 的边去掉,就会形成两个连通块,该边的经过次数就为两个连通块大小的乘积 size(u) * (n- size(v))。
代码实现:
#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int inf = 0x7fffffff;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll mod = 1e9 + 7;
const int N = 5e5 + 5;
int t, n, m;
int s[N], c[N], p[N];
int h[N], tt;
struct node{
int to, ne;
}g[N];
void add(int u,int v){
g[++ tt]=(node){v, h[u]};
h[u] = tt;
}
void dfs(int u,int fa){
s[u] = 1;
for(int i = h[u]; i; i = g[i].ne){
int v = g[i].to;
if(v == fa) continue;
dfs(v, u);
s[u] += s[v];
c[i/2] = s[v]*(n-s[v]);
}
}
signed main()
{
IOS;
cin >> t;
while(t --){
cin >> n; tt = 1;
for(int i = 0; i <= n*2;i ++) h[i] = 0, s[i] = 0;
for(int i = 1; i <= m; i ++) p[i] = 0;
for(int i = 1; i < n; i ++){
int u, v; cin >> u >> v;
add(u, v); add(v, u);
}
dfs(1,0);
cin >> m;
for(int i = 1; i <= m; i ++) cin >> p[i];
sort(p+1, p+m+1); sort(c+1,c+n);
int ans = 0;
if(m <= n-1){
for(int i = n-1, j = m; j >= 1; i --, j --)
ans = (ans + c[i]*p[j]%mod )%mod;
for(int i = n-m-1; i >= 1; i --)
ans = (ans + c[i])%mod;
}
else{
for(int i = m-1; i >= n-1;i --)
p[i] = p[i]*p[i+1]%mod;
for(int i = n-1; i >= 1; i --)
ans = (ans + c[i]*p[i]%mod )%mod;
}
cout << ans << endl;
}
return 0;
}