Codeforces D Rarity and New Dress (二维dp & 菱形寻找)

传送门

题意: 给出n*m的矩形,相同字符的表示同一种颜色,找出矩阵中有多少个斜正方形(如下图所示)。
在这里插入图片描述
在这里插入图片描述

思路:

  • 设dp[i][j]表示(i,j)为止以上能最多得到的"斜正方形",答案就是所有位置的dp值之和。
  • 而对于位置(i,j),只需要考虑(i-1,j-1),(i-1,j),(i-1,j+1),(i-2,j)位置是否与其同色。
  • 若同色则(i,j)位置构成一个图形,直接dp[i][j]=1。
  • 反之就dp[i][j] = min(dp[i-1][j-1],dp[i-1][j+1],dp[i-2][j])+1。(画图就很好理解)。

代码实现:

#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int  inf = 0x7fffffff;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll   mod = 1e9 + 7;
const int  N = 2005;

int n, m, ans, dp[N][N];
char mp[N][N];

signed main(){
    cin >> n >> m;
    for(int i = 2; i <= n+1; i ++) cin >> mp[i]+1;
    for(int i = 2; i <= n+1; i ++)
        for(int j = 1; j <= m; j ++){
            if (mp[i][j]!=mp[i-1][j] || mp[i][j]!=mp[i-1][j-1] || mp[i][j]!=mp[i-1][j+1] || mp[i][j]!=mp[i-2][j]) dp[i][j] = 1;
            else dp[i][j] = min(min(dp[i-1][j-1], dp[i-1][j+1]), dp[i-2][j]) + 1;
            ans += dp[i][j];
        }
    cout << ans << endl;
    return 0;
}

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页