Codeforces C. Nezzar and Symmetric Array (#698 Div.2) (构造 / 思维)

16 篇文章 0 订阅
3 篇文章 0 订阅

传送门

题意: 有一个数组a,由2n个不同的整数组成,对于每个a_{i}都有一个a_{j}使得 a_{i} = −a_{j} (1<=i,j<=2n)。

有一结果数组d,其 d_{i} = \sum _{j=1}^{2n}|a_{i}-a_{j}|,现在给出这个数组d,能否找到对应的数组a。

思路: 

  * 由于是找对称点,可以放在数轴上来讨论。a_{i}为数轴上的点,d_{i}为其与其他所有点的距离和。

  *  不难发现,d值大的点在两侧,d值小的点在中间。由于是对称的,我们讨论一边即可。

  *  不难发现:a_{i-1}a_{i}间的距离 x_{i} = |a_{i-1}-a_{i}|。

              d_{i} = ( (a_{i-1}点到其左侧所有点的距离和) + (n+i-1)*x_{i} ) + (a_{i}到其右侧所有点的距离和)。

              d_{i-1} = (a_{i-1}点到其左侧所有点的距离和) + ( (n-i+1)x_{i} + (a_{i}到其右侧所有点的距离和) )。

              因此  d_{i} = (2*n-2)* x_{i},若求得的 x_{i} 不为整数,则不存在数组a。

  *   现在我们确定了所有点都能找到对称点了,开始判断它们的对称距离是否为偶数,即是否能正好关于0点对称。

      即得满足 x_{1} = 2*a_{1},而 d_{1} = n*x_{1} + 2*(a_{1}到其右侧所有点的距离和),求得的 x_{1} 必须为大于0的偶数。

  *  满足以上所有条件,则能够构成合法的a数组,思路有参考大佬博客

代码实现:

#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int  inf = 0x3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll   mod = 1e9 + 7;
const int  N = 2e5 + 5;

inline void read(int &x){
    char t=getchar();
    while(!isdigit(t)) t=getchar();
    for(x=t^48,t=getchar();isdigit(t);t=getchar()) x=x*10+(t^48);
}

int t, n;
int d[N], st[N]; //用来存放a1-an的到其他点的距离和
map<int,int> mp;

signed main ()
{
    IOS;
    cin >> t;
    while(t --){
        mp.clear();
        cin >> n;
        int cnt = 0, m = n<<1;
        for(int i = 0; i < m; i ++){
            cin >> d[i];
            mp[d[i]] ++;
            if(mp[d[i]]==1) st[++cnt] = d[i];
        }
        sort(st+1, st+cnt+1);
        int flag = 0;
        for(int i = 1; i <= cnt; i++){
            if(mp[st[i]]!=2){ //确保每个点a[i]都能有个和它对称的点a[j]
                flag = 1;     //但目前还不能确定对称距离是否为偶数
                break;        //即不能确定是 -1 1 这样的对称, 还是 -1 2这样的对称
            }
        }
        int sum = 0; //用来求a1到右边所有点的距离和
        if(!flag){
            for(int i = cnt; i > 1; i --){
                int k = 2*i-2;
                int s = st[i]-st[i-1];
                if(s%k){  //xi不是整数
                    flag = 1;
                    break;
                }
                else sum += (cnt-i+1)*(s/k);
            }
        }   //实际d1太小      //x1不是整数       //x1为奇数,不能关于0点对称
        if((st[1]-2*sum)<=0 || (st[1]-2*sum)%n || (st[1]-2*sum)/n%2) flag = 1; //判断x1是否能存在
        cout << (flag ? "NO":"YES") << endl;
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值