回顾最大子序列和问题

//手撕最大子序列和问题
#include <iostream>
#include <algorithm>

using namespace std;

int MaxSubsequenceSum_A(int A[], int N);
int MaxSubsequenceSum_B(int A[], int N);
int MaxSubsequenceSum_C(int A[], int N);
int MaxSubsequenceSum_D(int A[], int N);
int MaxSubSum(int A[], int Left, int Right); 

int main(){
	
	int a[100];
	int N;
	cin >> N;
	for(int i=0; i<N; i++)
	{
		cin >> a[i];
	}
	
	int res = MaxSubsequenceSum_D (a,N);
	cout << res;
	return 0;
	
} 

int MaxSubsequenceSum_A(int A[], int N)
{
	int ThisSum, MaxSum, i, j, k;
	MaxSum = 0;
	
	for(i=0; i<N; i++)
	{
		for (j=i; j<N; j++)
		{
			ThisSum = 0;
			for(k=i; k<=j; k++)
			{
				ThisSum += A[k];	
			}
			if( ThisSum > MaxSum )
			{
				MaxSum = ThisSum;	
			}	
		}
	}
	
	return MaxSum;
	//最简单的暴力穷举,找到最大的,代码没有经过任何优化三层嵌套循环O(N^3); 
}

int MaxSubsequenceSum_B(int A[], int N)
{
	int ThisSum, MaxSum , i, j;
	for(i=0; i<N; i++)
	{
		ThisSum = 0;
		for(j=i; j<N; j++)
		{
			ThisSum += A[j];
			
			if( ThisSum > MaxSum ){
				MaxSum = ThisSum;
			}
			
		}
	}
	return MaxSum;
	//对穷举法进行了有限的优化,减免了一层循环。
	//按照教材所说,并不是所有的三层循环都可以做这种优化(而且效果实在有限) 
}
int MaxSubSum(int A[], int Left, int Right)//错点1.递归求解要有基准情况 
{
	
	int Center, Res;
	int MaxRightSum, MaxLeftSum;
	int MaxRightBorderSum, MaxLeftBorderSum;
	int LeftBorderSum=0, RightBorderSum=0;
	
	if(Left==Right){
		if(A[Left]>0)
			return A[Left];
		else
			return 0;
	} //递归的基准情形 
	
	Center = (Left+Right)/2;
	
	MaxRightSum = MaxSubSum(A, Center+1, Right);
	MaxRightSum  = MaxSubSum(A, Left, Center);//递归求解左右区域的最大子序列和 
	
	MaxRightBorderSum = 0;
	MaxLeftBorderSum  = 0;
	for(int i=Center; i>=Left; i--)
	{
		LeftBorderSum += A[i];
		if(LeftBorderSum > MaxLeftBorderSum)
		{
			MaxLeftBorderSum = LeftBorderSum;
		}
	}
	for(int i=Center+1; i<=Right; i++)
	{
		RightBorderSum += A[i];
		if(RightBorderSum > MaxRightBorderSum)
		{
			MaxRightBorderSum = RightBorderSum;
		}
	}
	
	Res = max(MaxRightSum,MaxRightSum);
	Res = max(Res, MaxRightBorderSum+MaxLeftBorderSum);
	
	return Res;
	
}
int MaxSubsequenceSum_C(int A[], int N)
{
	return MaxSubSum(A, 0, N-1); 
}
int MaxSubsequenceSum_D(int A[], int N)
{
	int ThisSum =0; 
	int MaxSum  =0;
	for(int i=0; i<N; i++){
		ThisSum += A[i];
		if(ThisSum > MaxSum){
			MaxSum = ThisSum;
		}
		if(ThisSum<0){
			ThisSum =0;
		}
	}
	return MaxSum;
	//联机算法,看懂这个算法并不难,但是难在理解和自己编写。
	//梳理一下算法思路,试图去理解
	//当ThisSum>0时,他就有成为最大和的潜力,但是TS是负数的话就完全没有这种可能,前面的数字就可以舍弃
	//说个具体的例子:-1 1 2 3 -4 5
	//我们遇到的第一个数字是-1,TS=-1,这时不论下一个数字是什么,TS都会导致新的TS'减小,所以我们直接归零
	//事实上就是舍弃了第一个数(-1) 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值