题目
给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离。
两个相邻元素间的距离为 1 。
示例 1:
输入:
[[0,0,0],
[0,1,0],
[0,0,0]]
输出:
[[0,0,0],
[0,1,0],
[0,0,0]]
示例 2:
输入:
[[0,0,0],
[0,1,0],
[1,1,1]]
输出:
[[0,0,0],
[0,1,0],
[1,2,1]]
提示:
给定矩阵的元素个数不超过 10000。
给定矩阵中至少有一个元素是 0。
矩阵中的元素只在四个方向上相邻: 上、下、左、右。
题解
- 数组的广度优先遍历
将数值为0的坐标装进队列,设置seen
dist数组用来记录好0到1的距离 - 同一循环进入队列的在同一层次,前后无影响
- 超级源点问题
代码
class Solution {
private:
static constexpr int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> dist(m, vector<int>(n));
vector<vector<int>> seen(m, vector<int>(n));
queue<pair<int, int>> q;
// 将所有的 0 添加进初始队列中
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) {
q.emplace(i, j);
seen[i][j] = 1;
}
}
}
// 广度优先搜索
while (!q.empty()) {
auto [i, j] = q.front();
q.pop();
for (int d = 0; d < 4; ++d) {
int ni = i + dirs[d][0];
int nj = j + dirs[d][1];
if (ni >= 0 && ni < m && nj >= 0 && nj < n && !seen[ni][nj]) {
dist[ni][nj] = dist[i][j] + 1;
q.emplace(ni, nj);
seen[ni][nj] = 1;
}
}
}
return dist;
}
};