吴恩达机器学习笔记week9——神经网络具体实现 Neutral network Learning

这篇博客详细介绍了吴恩达机器学习课程中的神经网络部分,包括代价函数的定义、反向传播算法的原理及其在优化成本函数中的应用。讨论了如何通过梯度检测确保算法正确性,以及初始化权重的重要性。此外,还概述了将所有组件整合到一起实现神经网络的步骤,并以无人驾驶为例展示了实际应用。
摘要由CSDN通过智能技术生成

9-1.代价函数 Cost function

术语和符号含义:
在这里插入图片描述
a^(1)表示输入层 = X
a^(L)表示输出层 = h_theta(X)
a^(i)表示第i层的activation激励值

定义代价函数:
在这里插入图片描述
K表示最后输出向量大小,即K=1表示有1个输出,K=n表示有n个输出
代价函数只要最后输出结果与真实值对比就好,无需中间隐藏层
但是后面正则项要对过程中每一个theta值进行处理

9-2.反向传播算法 Backpropagation algorithm——用于优化代价函数optimize the cost function

最小化代价函数,求偏导数
在这里插入图片描述

  • 仅有一个训练样本
    在这里插入图片描述
  • m个训练样本
    在这里插入图片描述

9-3.理解反向传播 Backpropagation intuition

在这里插入图片描述
注意delta的含义

  • 前向传播 vs 反向传播
    在这里插入图片描述

9-4.使用注意:展开参数 Implementation note:Unrolling parameters——矩阵转向量

Octave操作指南

9-5.梯度检测 Gradient checking——检测错误的方法

  • when theta is real number,approximation to derivative
    在这里插入图片描述
  • when theta is vector parameter,approximation to derivative
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

9-6.随机初始化 Random initialization

在这里插入图片描述
对称权重问题symmetry weights:在神经网络中参数theta是不能都初始化为0的,反之,图中相同颜色产生的权重,误差都是一样的,即只算出一种特征,这是高度冗余的。
解决方法:
在这里插入图片描述

9-7.组合到一起 Putting it together——实现神经网络的具体步骤

  • pick a network architecture
    在这里插入图片描述
  • trainning a neutral network
    在这里插入图片描述
    在这里插入图片描述

9-8.无人驾驶 Autonomous driving example

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值