吴恩达机器学习笔记week8——神经网络 Neutral network
8-1.非线性假设 Non-linear hypotheses
pixel 像素
input feature space 输入特征空间很大
决策边界不是规则的图形
8-2.神经元与大脑 Neurons and the brain
神经重接实验 neuro-rewiring experiments
8-3.模型展示Ⅰ Model representation Ⅰ
参数==权重
激励函数 activation function 一般是sigmoid函数
x0为偏置量,一般为1 ,可以省略画出
隐藏层
theta的规格,由前一层神经元个数和后一次神经元个数决定
上标一般用来表示第几层的数据
下标表示第几个特征或者神经元
theta_ij i表示生成下一层的第i个元素,j表示该层第几个元素
8-4.模型展示Ⅱ——向量化,forward propagation前向传播
神经网络架构
8-5.例子与直觉理解Ⅰ Examples and intuitions Ⅰ——AND/OR Function
8-6.例子与直觉理解Ⅱ Examples and intuitions Ⅱ——XNOR
8-7.多元分类 Multi-class classification
多分类问题:handwriting recognition