吴恩达机器学习笔记week8——神经网络 Neutral network

8-1.非线性假设 Non-linear hypotheses

pixel 像素
input feature space 输入特征空间很大
决策边界不是规则的图形

8-2.神经元与大脑 Neurons and the brain

神经重接实验 neuro-rewiring experiments

8-3.模型展示Ⅰ Model representation Ⅰ

参数==权重
激励函数 activation function 一般是sigmoid函数
在这里插入图片描述
x0为偏置量,一般为1 ,可以省略画出

隐藏层
在这里插入图片描述
theta的规格,由前一层神经元个数和后一次神经元个数决定
上标一般用来表示第几层的数据
下标表示第几个特征或者神经元
theta_ij i表示生成下一层的第i个元素,j表示该层第几个元素

8-4.模型展示Ⅱ——向量化,forward propagation前向传播

在这里插入图片描述
在这里插入图片描述
神经网络架构

8-5.例子与直觉理解Ⅰ Examples and intuitions Ⅰ——AND/OR Function

在这里插入图片描述

8-6.例子与直觉理解Ⅱ Examples and intuitions Ⅱ——XNOR

在这里插入图片描述
在这里插入图片描述

8-7.多元分类 Multi-class classification

多分类问题:handwriting recognition
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值