- 博客(22)
- 收藏
- 关注
原创 python数字图像处理基础(十二)——银行卡识别
感兴趣区域。机器视觉、图像处理中,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,ROI。在Halcon、OpenCV、Matlab等机器视觉软件上常用到各种算子(Operator)和函数来求得感兴趣区域ROI,并进行图像的下一步处理。2.模板要求:输入模板必须带有所有的数字,且字体与识别的银行卡号一样输入:模板图像输出:0-9各个数字模板流程:(1)输入模板图像(2)模板图像转换为灰度图(3)灰度图转换为二值图(4)找到所有数字的外轮廓。
2024-01-19 15:17:23 1102 2
原创 python数字图像处理基础(十一)——光流估计
具体来说,该算法考虑图像中的每个像素周围的小邻域,并假设该邻域内的像素强度变化可以用一个位移向量来描述。光流估计的目标是找到一个场景中每个像素点的运动向量,表示它在图像中的位移。通过了解图像序列中物体的运动,我们可以更好地理解场景的动态变化,从而支持许多应用,如行为分析、目标跟踪和视频稳定。是空间运动物体在观测成像平面上的像素运动的“瞬时速度”,根据各个像素点的速度矢量特征,可以对图像进行动态分析,例如目标跟踪。它假设一个小的图像块内的像素强度变化是线性的,并通过解一个最小二乘问题来计算局部运动。
2024-01-19 14:52:32 1523
原创 python数字图像处理基础(十)——背景建模
其基本思想是通过对视频序列中的像素进行建模,找到视频中的静态背景,并将不同的像素标记为背景和前景,从而使后续的对象检测和跟踪更为可靠。由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。在测试阶段,对新来像素点的值与混合高斯模型中的每一个均值进行比较,如果其差值在2倍的方差之间的话,则认为是背景,否则认为是前景。3.当后面来的像素值时,与前面已有的高斯的均值比较,如果该像素点的值与其模型均值差在3倍的方差内,则属于该分布,并对其进行参数更新。等,它们也可以用于不同的场景和需求。
2024-01-18 23:07:27 1518 1
原创 python数字图像处理基础(九)——特征匹配
利用两个图像中至少四个特征点能够求解一个单应性矩阵(homography matrix),然后用这个单应性矩阵能够将图像1中的某个坐标变换到图像2中对应的位置。基本的思想是:数据中包含正确的点和噪声点,合理的模型应该能够在描述正确数据点的同时摒弃噪声点。而RANSAC算法则通过随机采样和一致性检验,从包含噪声的数据中估计出正确的模型参数,对于一些存在噪声和异常值的情况,RANSAC能够更稳健地估计模型。你提到的使用SIFT找到特征点,并通过单应性矩阵将图像进行变换,是一种常见的方法。通过SIFT找特征点。
2024-01-18 22:50:57 5054 5
原创 python数字图像处理基础(八)——harris角点检测、图像尺度空间、SIFT算法
让选择的特征点更加准确:把图像首先做一个金字塔,金字塔中每一层做不同的高斯滤波,让每一层图像进行不同程度的模糊,通过差分的方法选出最有价值的点,点的选择方法:DoG空间极值检测——在3X3的三维像素区域内(类似魔方)将中心点与周围26个像素点进行比较,得到候选关键点;然而计算机要有相同的能力却不是那么的容易,在未知的场景中,计算机视觉并不能提供物体的尺度大小,其中的一种方法是把物体不同尺度下的图像都提供给机器,让机器能够对物体在不同的尺度下有一个统一的认知。角点是图像中局部区域的交叉点或者突出的特征点。
2024-01-18 22:43:38 1653 1
原创 python数字图像处理基础(七)——直方图均衡化、傅里叶变换
使用一个60×60的矩形窗口进行蒙板操作,去除低频分量,使用函数np.fft.ifftshift将图像中心平移回左上角,然后使用函数 np.ifft2()进行FFT逆变换,将得到的复数结果取绝对值。(个人理解,在图像问题当中,频域是指图像的灰度变化,也就是灰度图像的梯度值,这个和轮廓的原理差不多,灰度值变化剧烈的叫做高频分量,例如边界和噪声。:通过傅里叶变换,将图像转化为频谱图,而低通滤波和高通滤波则是傅里叶变换的逆变换,即通过对频谱图进行一些操作(保留低频/保留高频),从而达到改变原始图像的效果。
2024-01-17 23:36:24 2436
原创 python数字图像处理基础(六)——模板匹配、直方图
你可以将直方图视为图形或绘图,从而为你提供有关图像强度分布的总体思路。它是X轴上的像素值(范围从0到255,并非总是)和Y轴上图像中相应像素数量的绘图。
2024-01-17 23:30:53 1452
原创 python数字图像处理基础(五)——Canny边缘检测、图像金字塔、图像分割
该函数还可返回一个可选的hiararchy结果,这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i] [0] ~hierarchy[i] [3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。基于聚类的算法是基于事物之间的相似性作为类划分的标准,即根据样本集的内部结构将其划分为若干子类,以使相同类型的类尽可能相似、不同的类型的类尽可能不相似。3)图像中的对象区域用部分像素标记。
2024-01-17 23:14:57 2166
原创 python数字图像处理基础(四)——图像平滑处理、形态学操作、图像梯度
图像函数f(x,y)在点(x,y)的梯度是一个具有大小和方向的矢量,梯度的方向是函数f(x,y)变化最快的方向,当图像中存在边缘时,一定有较大的梯度值,相反,当图像中有比较平滑的部分时,灰度值变化较小,则相应的梯度也较小,图像处理中把梯度的模简称为梯度。让临近的像素具有更高的重要度,对周围像素计算加权平均值,较近的像素具有较大的权重值。与腐蚀相反,与卷积核对应的原图像的像素值中只要有一个是1,中心元素的像素值就是1。白到黑是正数,黑到白就是负数了,所有的负数会被截断,为0,即都是黑的。
2024-01-16 21:29:31 2549 1
原创 python数字图像处理基础(三)——图像融合、图形绘制、阈值操作、色彩分割
如果你想识别红色或是蓝色,可以直接将改成或是。其中color_dist内包含的是颜色在HSV模式下的范围。例:将一副图像从rgb颜色空间转换到hsv颜色空间,颜色去除白色背景部分。
2024-01-16 21:07:14 1333
原创 python数字图像处理基础(二)——图像基本操作、滑动条、鼠标操作
方法二:也可直接调用createTrackbar() 函数,直接就运行函数,进而反复调用createTrackbar()的第五个参数——自定义函数中进行操作也可。cv2.BORDER_DEFAULT 边界元素的镜像,填充的边界与原图像边界(忽略第一个元素)对称,成镜像,gfedcb。cv2.BORDER_REFLECT 边界元素的镜像,填充的边界与原图像边界对称,成镜像,fedcba。cv2.split():分离图像的BGR,cv2.merge():根据BGR值重新融合出图像。
2024-01-16 18:28:36 1572 1
原创 python数字图像处理基础(一)——计算机中的图像
图像分辨率的意思就是一幅图像的长和宽有多少个像素点,例如一幅分辨率 为1366*768的图像,便是图像的长为1366个像素点,宽为768个像素点, 一 般情况而言,分辨率越高的图像越清晰,反之越模糊。当num<0时,np.argsort()[num]就是把数组y的元素反向输出,例如np.argsort()[-1]即输出x中最大值对应的index,np.argsort()[-2]即输出x中第二大值对应的index,依此类推。包括图像增强,图像回复,图像压缩,图像分割等内容。
2024-01-16 18:13:39 1085 1
原创 【机器学习】基本模型简易代码整理
通过计算不同特征的信息增益,我们可以确定哪个特征是最佳的划分特征,以便在决策树的构建过程中进行节点分裂。特征选择过程的目标是在保持模型预测准确性的同时,尽可能减少模型的复杂性。在实际应用中,可以使用不同的性能指标、树的深度范围和交叉验证的折数进行调整,以获得最佳模型。在分类问题中,SVM 的目标是找到一个最优的超平面,以最大化两个不同类别的数据点(即支持向量)之间的间隔。然而,SVM 也有其局限性,如处理大规模数据集时可能面临计算效率问题,对于高度非线性和复杂的问题,选择合适的核函数和参数也是一项挑战。
2024-01-08 12:27:18 1178 1
原创 【机器学习】西瓜书要点个人整理
对于给定的模型和参数 (θ),似然函数 (L(θ|X)) 表示观测到数据集 (X) 的概率。对于独立同分布的假设,似然函数通常是各个数据点概率的乘积。
2024-01-08 12:03:31 1563 1
原创 模糊数学及应用——(二)
在模糊数学领域中,模糊综合评价是一种基于模糊集合理论的评价方法,它用于处理那些因素或变量不完全明确或不确定的情况。模糊综合评价旨在将各种评价因素或指标结合起来,为复杂的决策问题提供一个模糊的、综合的评价结果。通过模糊综合评价,可以有效地处理各种不确定性和模糊性,为决策者提供一个相对综合和客观的评价结果。:利用模糊集合理论中的运算(如模糊交、模糊并、模糊补等)对各个评价因素或指标的模糊值进行组合和处理,得到一个综合的模糊评价结果。:首先,明确需要评价的各个指标或因素,并为每个指标或因素建立相应的模糊集。
2024-01-08 11:49:14 736 1
原创 计算智能——人工免疫算法
免疫算法(Immune Algorithm,IA)是基于免疫学理论和生物免疫系统机制而提出的计算智能算法,是对生物免疫机理的一种模拟。免疫机理种类繁多,利用生物免疫系统的某一方面机制或原理就可以设计新算法。1.分析待求问题,搜集特征信息:相邻两城市间距离越短,总路径可能会最短2.根据特征信息制作疫苗: Ai ——> Aj3.对亲和度低的抗体接种疫苗疫苗不是一个成熟或完整的抗体,它是抗体中一些优秀的基因疫苗与记忆细胞的区别:记忆细胞是亲和度高的抗体疫苗是一些基因,可以用来。
2023-12-25 18:26:22 1820 1
原创 计算智能——粒子群算法学习
粒子群优化算法是什么?它由谁提出的?PSO模拟了自然界鸟群觅食的过程。通过群体的协作寻找到问题的全局最优解。它是1995年由美国学者Eberhart和Kennedy提出的,现在已经广泛应用于各种工程领域的优化问题之中。
2023-12-25 17:17:09 521 1
原创 计算智能——蚁群算法学习
对蚁群算法来说,初始状态时各个路径存在完全相同的信息素,算法采用的反馈方式是较优的路径上留下更多的信息素,而更多的信息素又吸引了更多的蚂蚁选择这条路径,这个正反馈的过程使得这个路径上的信息素不断增多,引导整个系统向最优解的方向进化。相对于其它算法,蚁群算法对初始路线要求不高,即蚁群算法的求解结果不依赖于初始路线的选择,而且在搜索过程中不需要进行人工的调整。提高了算法的效率,使得算法具有较强的全局搜索能力。是一种动态的信息,反映了蚂蚁在解决问题过程中的经验积累和向其他蚂蚁学习的能力,该参数是在线更新的。
2023-12-25 16:17:44 1808
原创 进化计算——用遗传算法求解问题(二)
遗传算法是对决策变量的编码进行遗传操作遗传算法是从许多点开始并行操作,因而可以有效地防止搜索过程收敛于局部最优解。遗传算法不需要其他推导和附加信息,对问题的依赖性小。遗传算法在解空间进行高效启发式搜索,而非盲目地穷举或完全随机搜索。遗传算法对于待寻优的函数基本无限制,因而应用范围较广。遗传算法具有并行计算的特点,因而可通过大规模并行计算来提高计算速度。遗传算法更适合大规模复杂问题的优化。遗传算法计算简单,功能强。
2023-12-24 22:15:30 1364
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人