python数字图像处理基础(七)——直方图均衡化、傅里叶变换

直方图均衡化

均衡化原理

图像均衡化是一种基本的图像处理技术,通过更新图像直方图的像素强度分布来调整图像的全局对比度。这样做可以使低对比度的区域在输出图像中获得更高的对比度。

简单理解:改变图像对比度,让色彩更丰富,灰度值直方图:瘦高 -> 均衡

本质上,直方图均衡化的工作原理是:

  • 1.计算图像像素强度的直方图
  • 2.均匀展开并分布最频繁的像素值(即直方图中计数最大的像素值)
  • 3.给出累积分布函数(CDF)的线性趋势

在这里插入图片描述

注意到以上直方图有许多峰值,这表明有很多像素被归入到这些各自的bin中。使用直方图均衡化,我们的目标是将这些像素分散到没有太多像素的bin中。

均衡化效果

在这里插入图片描述

注意输入图像的对比度是如何显著提高的,但代价是也提高了输入图像中的噪声的对比度。

这就提出了一个问题:是否有可能在不增加噪声的同时提高图像对比度?
答案是“是的”,你只需要应用自适应直方图均衡化

通过自适应直方图均衡化,我们将输入图像划分为M × N网格。然后我们对网格中的每个单元进行均衡处理,从而获得更高质量的输出图像:

在这里插入图片描述

标准直方图均衡化

OpenCV 包括通过以下两个函数实现基本直方图均衡和自适应直方图均衡:

cv2.equalizeHist
cv2.createCLAHE

应用cv2.equalizeHist()函数非常简单,只需将图像转换为灰度,然后调用cv2.equalizeHist即可:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
equalized = cv2.equalizeHist(gray)

自适应直方图均衡化

实现自适应直方图均衡化要求:

1.将输入图像转换为灰度/从中提取单个通道
2.使用cv2.createCLAHE实例化CLAHE算法
3.在CLAHE对象上调用.apply()方法来应用直方图均衡化
这比听起来容易得多,只需要几行代码:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
equalized = clahe.apply(gray)

注意,我们为cv2.createCLAHE提供了两个参数:

  • clipLimit:这是对比度限制的阈值
  • tileGridSize:将输入图像划分为M × N块,然后对每个局部块应用直方图均衡化

傅里叶变换

原理

傅里叶变换常用来分析各种滤波器的特性。可以是用2D离散傅里叶变换分析图像的频域特性。

(个人理解,在图像问题当中,频域是指图像的灰度变化,也就是灰度图像的梯度值,这个和轮廓的原理差不多,灰度值变化剧烈的叫做高频分量,例如边界和噪声。灰度值变化缓慢的称谓低频分量)

实现2D离散傅里叶变换(DFT)的的算法叫做快速傅里叶变换(FFT)。

对图像进行X方向和Y方向的傅里叶变换,会得到图像的频域表示图。

直观理解,一个正弦信号,如果幅度变换很快,可以称之为高频信号,如果变换慢,可以称之为低频信号。在图像中,灰度值变化快的位置,可以称之为高频分量(只变化快而不是次数多),灰度值变化慢的称之为低频分量

图像使用使用二维离散傅里叶变换后得到一个复数矩阵,叫做图像的频谱图。

低通滤波器:只保留低频,会使得图像模糊

高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是从cv2.dftt()cv2.idft(),输入图像需要先转换成np.float32格式:

    img = cv2.imread(‘lena.jpg’, 0)

    img_ float32 = np.float32(img)

    dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置(故转换后的图像从中心向四周频率增高),可以通过shift变换来实现:

    dft_shift = np.fft.fftshift(dft)

  • cv2.dft()返回的结果是复数矩阵,即双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)

    magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:, :, 0],dft_shift[:, :, 1]))

img = cv2.imread('33.jpg',0)  # 读图
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)  # 傅里叶变换
dft_shift = np.fft.fftshift(dft)  # 平移到中心,结果为双通道(实部,虚部)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))  # 转化为频谱图

理解:通过傅里叶变换,将图像转化为频谱图,而低通滤波和高通滤波则是傅里叶变换的逆变换,即通过对频谱图进行一些操作(保留低频/保留高频),从而达到改变原始图像的效果。

低通滤波

作用:将图像变得平滑,同时也就看起来比较模糊。

做法:利用掩码,把中心部分频率低的保留下来

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./image/img1.jpg', 0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags= cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape  # 横纵坐标
crow, ccol = int(rows/2), int(cols/2)  # 找到中心位置

# 低通滤波制作蒙板
mask = np.zeros((rows, cols, 2), np.uint8)  # 初始化全部像素点数值置为0
mask[crow-30:crow+30, ccol-30:ccol+30] = 1  # 相当于只有中心位置60*60像素点是1,其余全为0

# IDFT傅里叶逆变换 即把dft后得到的按频率分布的奇奇怪怪的图(称为频谱图)变为原来imread进来的图
fshift = dft_shift*mask  # 将掩膜和得到的结果结合,即只有中心60*60保留
f_ishift = np.fft.fftshift(fshift)  # 做逆变换,当然要把原来fft左上角移到中间的再移回左上角ifft
img_back = cv2.idft(f_ishift)  # 逆变换,频谱图还原为原图,但还不能看,因为结果是双通道(实部,虚部)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])  # 套公式处理,让图像可看

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()

高通滤波

作用:增强边缘,非边缘部分被过滤

做法:使用一个60×60的矩形窗口进行蒙板操作,去除低频分量,使用函数np.fft.ifftshift将图像中心平移回左上角,然后使用函数 np.ifft2()进行FFT逆变换,将得到的复数结果取绝对值。(DFT的逆变换)

与低通滤波唯一的区别就在蒙版的制作

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./image/img1.jpg', 0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags= cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape  # 横纵坐标
crow, ccol = int(rows/2), int(cols/2)  # 找到中心位置

# 高通滤波制作蒙板
mask = np.ones((rows, cols, 2), np.uint8)  # 初始化全部像素点数值置为1
mask[crow-30:crow+30, ccol-30:ccol+30] = 0  # 相当于只有中心位置60*60像素点是0,其余全为1

# IDFT傅里叶逆变换 即把dft后得到的按频率分布的奇奇怪怪的图变为原来imread进来的图
fshift = dft_shift*mask  # 将掩膜和得到的结果结合,即只有中心60*60保留
f_ishift = np.fft.fftshift(fshift)  # 做逆变换,当然要把原来fft左上角移到中间的再移回左上角ifft
img_back = cv2.idft(f_ishift)  # 逆变换,模糊频率图还原为原图,但还不能看,因为结果是双通道(实部,虚部)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])  # 套公式处理,让图像可看

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()

思想:将图像通过傅里叶变换映射到频域中进行操作,往往简单高效,最后再逆变换转化回来就好


  • 29
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 用Python表示直方图均衡化原理,可以使用以下代码:from skimage import exposure# Load image and convert to grayscaleimg = cv2.imread('image.jpg', 0)# Equalize the histogram of the input image equalized_img = exposure.equalize_hist(img) ### 回答2: 直方图均衡化是一种用于图像增强的技术,可以提高图像的对比度和清晰度。在Python中,可以通过以下步骤实现直方图均衡化原理: 1. 导入所需的库和模块,包括cv2(OpenCV)和numpy。 2. 使用cv2.imread()函数读取图像,并将其转换为灰度图像。 3. 使用cv2.calcHist()函数计算灰度图像的直方图。 4. 使用numpy的累积和函数np.cumsum()对直方图进行累积和计算。 5. 根据直方图累积分布函数的计算结果,对每个像素值进行均衡化。通过使用numpy的插值函数np.interp()来计算原始像素值和均衡后的像素值之间的线性插值关系。 6. 根据均衡化后的像素值创建一个新的图像。 7. 使用cv2.imshow()函数显示原始图像和均衡化后的图像。 8. 使用cv2.waitKey()函数等待键盘输入,并使用cv2.destroyAllWindows()函数关闭显示的窗口。 这样,我们便能够通过Python实现图像的直方图均衡化直方图均衡化能够显著改善图像的质量表现,提升图像的可视化效果,增强图像的细节,并使得图像的整体对比度更为均匀。 ### 回答3: 直方图均衡化是一种用于增强图像对比度的方法,通过将图像的像素值进行重新分布来提高图像的质量。在Python中,可以使用OpenCV库来实现直方图均衡化。 首先,我们需要导入OpenCV库,并读取待处理的图像。可以使用cv2.imread函数来读取图像,该函数将返回一个表示图像的多维数组。 ``` import cv2 # 读取图像 image = cv2.imread('image.jpg', 0) ``` 接下来,我们需要计算图像的直方图。可以使用cv2.calcHist函数来计算直方图,该函数将返回一个表示直方图的数组。 ``` import cv2 import numpy as np import matplotlib.pyplot as plt # 读取图像 image = cv2.imread('image.jpg', 0) # 计算直方图 histogram = cv2.calcHist([image], [0], None, [256], [0, 256]) ``` 然后,我们需要计算累积直方图,以及将像素值重新映射到新的像素值范围。可以使用numpy.cumsum函数来计算累积直方图,并使用numpy.interp函数来进行像素值的重新映射。 ``` import cv2 import numpy as np import matplotlib.pyplot as plt # 读取图像 image = cv2.imread('image.jpg', 0) # 计算直方图 histogram = cv2.calcHist([image], [0], None, [256], [0, 256]) # 计算累积直方图 cumulative_histogram = np.cumsum(histogram) # 将像素值重新映射 normalized_histogram = cumulative_histogram * 255 / cumulative_histogram[-1] ``` 最后,我们可以使用numpy.interp函数来将像素值重新映射到新的像素值范围,并将结果保存为新的图像。 ``` import cv2 import numpy as np import matplotlib.pyplot as plt # 读取图像 image = cv2.imread('image.jpg', 0) # 计算直方图 histogram = cv2.calcHist([image], [0], None, [256], [0, 256]) # 计算累积直方图 cumulative_histogram = np.cumsum(histogram) # 将像素值重新映射 normalized_histogram = cumulative_histogram * 255 / cumulative_histogram[-1] # 将像素值重新映射到新的像素值范围 equalized_image = np.interp(image, np.arange(0, 256), normalized_histogram) # 显示原始图像和均衡化后的图像 plt.subplot(1, 2, 1) plt.imshow(image, cmap='gray') plt.subplot(1, 2, 2) plt.imshow(equalized_image, cmap='gray') plt.show() ``` 通过这样的处理,我们可以得到图像的直方图均衡化结果,使得图像的对比度得到增强。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值