【问题描述】
S城现有两座监狱,一共关押着N名罪犯,编号分别为1~N。他们之间的关系自然也极不和谐。很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突。我们用“怨气值”(一个正整数值)来表示某两名罪犯之间的仇恨程度,怨气值越大,则这两名罪犯之间的积怨越多。如果两名怨气值为c的罪犯被关押在同一监狱,他们俩之间会发生摩擦,并造成影响力为c的冲突事件。每年年末,警察局会将本年内监狱中的所有冲突事件按影响力从大到小排成一个列表,然后上报到S城Z市长那里。公务繁忙的Z市长只会去看列表中的第一个事件的影响力,如果影响很坏,他就会考虑撤换警察局长。
在详细考察了N名罪犯间的矛盾关系后,警察局长觉得压力巨大。他准备将罪犯们在两座监狱内重新分配,以求产生的冲突事件影响力都较小,从而保住自己的乌纱帽。假设只要处于同一监狱内的某两个罪犯间有仇恨,那么他们一定会在每年的某个时候发生摩擦。那么,应如何分配罪犯,才能使Z市长看到的那个冲突事件的影响力最小?这个最小值是多少?
【输入】
输入文件名为prison.in。输入文件的每行中两个数之间用一个空格隔开。
第一行为两个正整数N和M,分别表示罪犯的数目以及存在仇恨的罪犯对数。
接下来的M行每行为三个正整数aj,bj,cj,表示aj号和bj号罪犯之间存在仇恨,其怨气值为cj。数据保证1<=aj<bj<N,0<cj<=1,000,000,000,且每对罪犯组合只出现一次。
【输出】
输出文件prison.out共1行,为Z市长看到的那个冲突事件的影响力。如果本年内监狱中未发生任何冲突事件,请输出0。
【输入样例】
4 6
1 4 2534
2 3 3512
1 2 28351
1 3 6618
2 4 1805
3 4 12884
【输出样例】
3512
这道题可以用二分图染色做,但用并查集会更简单;
本题要求发生的冲突事件最大影响值最小,所以我们可以采取贪心策略:
选尽量大冲突值的一对罪犯,将他们分开;
证明:设当前冲突值为v[i],比其小的第一个冲突值为v[i+1];
若选第i对罪犯分开,则最大值为v[i+1];
若选第i+1对罪犯分开,则最大值为v[i]
又因v[i]>v[i+1]
所以选较大的比选较小的更优;
我们,将冲突值从大到小排序令第i+n个点为该点的敌人,若要分开一对罪犯,则将其敌人合并,
若要被分开得一对罪犯已经在同一个并查集中,则他们只能被分在同一个监狱中,则当前冲突值就是最大的冲突值;
代码如下
- #include <iostream>
- #include <cstdio>
- #include <algorithm>
- using namespace std;
- const int MAX=100000+10;
- struct Edge{
- int t,v,f;
- }A[MAX];
- bool cmp(Edge a,Edge b){
- return a.v<b.v;
- }
- int fa[MAX*2];
- inline int find(int x){
- if(x==fa[x])
- return x;
- return fa[x]=find(fa[x]);
- }
- int main(){
- freopen("prison.in","r",stdin);
- freopen("prison.out","w",stdout);
- int n,m;
- scanf("%d %d",&n,&m);
- for(int i=1;i<=m;i++){
- scanf("%d %d %d",&A[i].f,&A[i].t,&A[i].v);
- }
- sort(A+1,A+m+1,cmp);
- for(int i=1;i<=n*2;i++)
- fa[i]=i;
- for(int i=m;i>=1;i--){
- int ff=find(A[i].f),ft=find(A[i].t);
- if(ff==ft){
- printf("%d\n",A[i].v);
- return 0;
- }
- fa[find(ff+n)]=find(ft);
- fa[find(ft+n)]=find(ff);
- }
- printf("%d\n",0);
- return 0;
- }